

Machine-Independent Virtual Memory
Management for Paged Uniprocessor and

Multiprocessor Architectures

And

Labels and Event Processes in the Asbestos
Operating System

Presented by Petko Nikolov
9/22/09

Mach
● Problem

● OS portability suffers due to diff. memory structures
● Solution

● Portable, multiprocessor OS – Mach
● Few assumptions about memory hardware

– Just recover from page faults

Mach VM
● Supports:

● Large, sparse virtual address spaces
● Copy-on-write virtual copy operations
● Copy-on-write and read-write memory sharing
● Memory mapped files
● User-provided backing store objects and pagers

Mach Design
● Task
● Thread
● Port
● Message
● Memory object

VM Operations
● A task can:

● Allocate a region of VM on a page boundary
● Deallocate a region of VM
● Set the protection status of a region
● Specify the inhertance of a region
● Create and manage a memory object

Implementation
● 4 basic memory management data structures:

● Resident page table
● Address map
● Memory object
● Pmap

● Machine dependent vs independent

Resident Memory
● Physical memory – cache for virtual memory

objects
● Physical page entries linked into:

● Memory object list
● Memory allocation queues
● object/offset hash bucket

Address Maps
● Doubly-linked list of address map entries
● Map range of virtual addresses to area in virtual

object
● Contiguous

● Efficient for most frequent operations:
● Page fault lookups
● Copy/protection operations on address ranges
● Allocation/deallocation of address ranges

Memory Objects
● Repository for data, indexed by byte

● Resembles a UNIX file
● Reference counters allow garbage collection
● Pager – memory object managing task

● Handles page faults, page-out requests outside of
kernel

Sharing Memory
● Copy-on-write

● Shadow objects
● Remembers modified pages

● Read/write sharing
● Memory object not appropriate for this
● Must use sharing maps

Object Tree
● Must prevent large chains of shadow objects

● Utilize GC for shadow objects
● Unnecessary chains occurs during heavy

paging
● Cannot be detected easily

● Complex locking rules

pmap
● Management of physical address maps

● Only machine-dependent module
● Implement page-level operations
● Ensure hardware map is operational
● Need not keep track of all currently valid mappings

● Machine-independent parts are the driving force
of Mach VM operations

Porting Mach VM
● Code for VM originally ran on VAX machines
● IBM RT PC

● Approx. 3 weeks for pmap module
● Sequent Balance

● 5 weeks – bootable system
● Sun 3, Encore MultiMAX

Performance

Summary
● Sophisticated, hardware-independent VM

system possible
● Can achieve good performance in some cases

Asbestos

Labels and Event Processing in the Asbestos
Operating System

With slides borrowed from SOSP 2005 Asbestos presentation

Asbestos Outline
● Why is it needed?
● Other models

● Virtual machines
● Asbestos OS

● Labels
● Event processes

● Asbestos OKWS
● Performance

The Problem
● Web servers have exploitable software flaws

● SQL injection, buffer overrun
● Private information leaked

● Credit card #'s, SS #'s
● All data potentially exposed due to single flaw

● Lack of isolation of user data
● Unconstrained information flow

19

Virtual Machine Isolation

/submit_order.cgi

Kernel

/submit_order.cgi

Kernel

VMM

Alice
123 Main St.
4275-8204-4009-7915

Bob
456 Elm St.
5829-7640-4607-1273

20

Problem with VM Isolation
● Course-grained sharing/isolation
● Heavy on resources
● Clumsy way to handle problem

● Requires separate instance of OS for each label
● Should really have support for this in OS

21

Information Flow Control Systems
● Conventional multi-level security

● Kernel-enforced information flow control across processes
● A handful of levels and compartments: “secret, nuclear”
● Inflexible, administrator-established policies
● Central authority, no privilege delegation

● Language-enforced information flow (Jif)
● Applications can define flexible policies at compile time
● Enforced within one process

● Asbestos
● Applications can define flexible policies
● Kernel-enforced across all processes

22

Approaches

Within a process Across processes

P
ol

ic
y

de
fin

ed
 b

y: A
pp

lic
at

io
n

Determining MAC Access

The functionality provided by the interfaces to support MAC is used to determine the
access of objects by subjects. The POSIX.6 standard defines a subject to be an active
entity that can cause information to flow between controlled objects. The POSIX.6 standard
further specifies that since processes are the only such interface-visible element of both
the POSIX.1 and POSIX.6 standards, processes are the only subjects treated in POSIX.6
MAC. Objects are defined by POSIX.6 as the interface-visible data containers, i.e., entities
that receive or contain data to which MAC is applied. POSIX.6 specifies that objects are
files (this includes regular files, directories, FIFO-special files, and unnamed pipes), and
processes (in cases where a process is the target of some request by another process).
POSIX.6 also specifies that each subject and object shall have a MAC label associated
with it at all times.

The POSIX.6 standard does not define a mandatory access control policy perse, but does
define the restrictions for access based upon the comparison of the MAC label associated
with the subject and the MAC label associated with the object. The first general restriction
states that unprivileged processes (subjects) cannot cause information labeled at some
MAC label (L1) to become accessible to processes at MAC label (L2) unless L2 dominates
L1 (see Section 4.6.2 for the definition of ``dominates''). This restriction is further defined
with regard to accessing files and other processes. The restrictions placed on file
manipulation (reading, writing, creating, etc.) are those that are generally accepted when
implementing a MAC policy:

 1. to read a file, the label of the process must dominate the label of the file.
 2. to write to a file, the label of the process must be dominated by the label of the file
(The POSIX.6 standard specifies that dominance equals equivalence - if the labels are
equal, then each is considered to be dominant to the other).

For example, a user who is running a process at Secret should not be allowed to read a
file with a label of Top Secret. Conversely, a user who is running a process with a label of
Secret should not be allowed to write to a file with a label of Confidential.

The POSIX.6 restriction for assigning labels to newly created files is that the new file must
have a label that is dominant to the label of the subject, although the POSIX.6 interfaces
only allow the label to be equal to that of the process creating the new object. This
restriction forces

The POSIX.6 restriction for assigning labels to newly created files is that the new file must
have a label that is dominant to the label of the subject, although the POSIX.6 interfaces
only allow the label to be equal to that of the process creating the new object. This
restriction forces implementations to not allow processes to create files at a ``lower'' label.
For example, a process with a label of Top Secret should not be allowed to create a file
with a label of Secret. There are analogous restrictions on object access when the object
is a process as mentioned above.

To
p-S

ec
ret

K
er

ne
l

Conventional MLS

Asbestos

23

Asbestos Goal

24

Asbestos Goal
● Large-scale

● Changing population of thousands
● Efficient

● Cache user data, while keeping it isolated
● Unpriviliged

● Minimum privilege required
● Application defines notion of user
● Isolation of users' data
● Application policy

● Application-defined, OS-enforced

25

Asbestos Overview
● IPC similar to that of Mach

● Messages sent to ports
● Asynchronous, unreliable

● Asbestos labels
● Track, limit flow of information

● Event processes
● Efficiently support/isolate many concurrent users

26

Compartments
● Contamination / label type

● Mike's data, Michele's data, Peter's business data
● Created by application

● Creator process can delegate rights

27

Labels
● Each process has send and receive label

● Send label track current contamination
● Receive label tracks max contamination (clearance)

● Rules enforced when messages are sent
● Contamination of receiver updated

28

Basic
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Send
Label

Recv
Label

Bob's
ahttpd

Backend
DB

29

Basic
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

30

Basic
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Rule 1:
The kernel contaminates
the message with all of the
sender's contamination

31

Basic
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Rule 2:
The kernel validates that the
destination has clearance to
receive the contamination of
the messageSend

Label

Recv
Label

32

Basic
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Rule 3:
At delivery, the destination
takes on the contamination
of the message

33

Basic
Example

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

34

Implementing Clearance Checks
● How does the clearance check work?
● Labels form a lattice
● Partial ordering

● Sender's send label must be less than or equal to the
destination's receive label

● Send label updated with a least upper bound
operator

v

vv

v

35

Limiting Bug Impact

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

36

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Limiting Bug Impact

37

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Limiting Bug Impact

38

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Limiting Bug Impact

39

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Limiting Bug Impact

40

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Limiting Bug Impact

41

Application Defined Policies
● Where did the compartments come from?

● How did the labels get set the way they are?

● In traditional multi-level security systems, the
system operator does these things

● Asbestos labels provide a decentralized and
unprivileged method to set these initial
conditions

42

Compartment
Creation

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

43

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Compartment
Creation

password

44

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

passwordpassword

Compartment
Creation

45

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Compartment
Creation

Any process that creates a
compartment gets privilege
with respect to that
compartment:

Declassify data
Grant clearance
Delegate privilege

46

Declassify
Receive

Alice's
ahttpd

 User

 Kernel

Bob's
ahttpd

Backend
DB

cgi script

Send
Label

Recv
Label

47

Optional Labels

● Process can attach optional (discretionary) labels
to messages

● CS – Contaminate Send

● DR – Declassify Receive

● DS – Declassify Send
● V – Verify

48

Declassify
Receive

Alice's
ahttpd

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

cgi script

Declassify receive
grants clearance for
a compartment to
another process

Send
Label

Recv
Label

49

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

The kernel checks
that processes have
the privilege needed
to grant clearance

Send
Label

Recv
Label

DR=

50

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

Send
Label

Recv
Label DR=

51

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

Send
Label

Recv
Label

52

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

Send
Label

Recv
Label

53

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

Send
Label

Recv
Label

54

Declassify
Receive

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

55

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

Send
Label

Recv
Label

56

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

No privilege needed
for CS – it can only
add processes to a
compartment

Send
Label

Recv
Label

CS=

57

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

Send
Label

Recv
Label

58

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

Send
Label

Recv
Label

59

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

Send
Label

Recv
Label

60

Contaminate
Send

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

CS =

Send
Label

Recv
Label

61

CGI Setup

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =

Send
Label

Recv
Label

62

Bob Setup

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

63

Bob Setup

Alice's
ahttpd

cgi script

 User

 Kernel

Bob's
ahttpd

Backend
DB

Application Trust

Send
Label

Recv
Label

64

Label Implementation
● Contamination & Privilege = Label level (*, 0-3)

● = {A *, B 3, 1}

● A & B are compartment names

● Trailing 1 = Neutral in all other compartments

65

Declassification
● Information flow control keeps users data

completely disjoint
● Alice wants to export some of her data, like her

profile
● But all her data is in her compartment

● How can she safely declassify her data?
● Alice must trust all processes that can do so
● To minimize declassification bugs, we build

declassifiers as simple, single purpose programs

66

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

67

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

DR =DS=

Send
Label

Recv
Label

The process must
have privilege for the
compartment to use
both DS and DR

68

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

69

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

profile

70

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

profile

71

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

profile

72

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

Since the process is
privileged in Alice's
compartment, it doesn't
get contaminated

profile

73

Declassification

Alice's
ahttpd

Alice's profile
declassifier

 User

 Kernel

Bob's
ahttpd

Backend
DB

Send
Label

Recv
Label

profile

74

Other Label Features
● Verify label on messages

● Allows a process to prove it has labels at specific levels
● Integrity tracking

● Enabled by level 0
● Different default level for send & receive labels

● Enables interesting isolation policies

75

Preventing Contamination
● Ports

● Associated with receive label
● Verification imposed by receiver
● Deny decontamination of receive labels beyond

certain point
● Receiver can grant rights to processes to send
● Prevents arbitrary processes from sending to it

76

Combating Process Over-Contamination
● One process per user per service

● Lots of heavy weight context switches
● Lots of memory

● Combine processes to get one process per
service?
● Become too contaminated to function
● Or too privileged

● Many processes are similar
● Programming style help?

77

Event Loop
wh i l e (1) {

 e v e n t = g e t _ n e x t _ e v e n t ();

 u s e r = l o o k u p _ u s e r (e v e n t) ;

 i f (u s e r n o t y e t s e e n)

 u s e r . s t a t e = c r e a t e _ s t a t e ();

 p r o c e s s _ e v e n t (e v e n t , u s e r);

}

● State isolated to data structures
● Stack not used from event to event
● Execution state has nice preemption points

Event Process Abstraction
 ep_checkpoi nt (&ms g);

 i f (! s t a t e . i n i t i a l i z e d) {

 i n i t i a l i z e _ s t a t e (&s t a t e);

 s t a t e . r e p l y = n e w _ p o r t ();

 }

 p r o c e s s _ me s s a g e (&ms g , &s t a t e);

 ep_yi el d(); / / r e v e r t t o c h k p o i n t e d me mo r y

● Fork memory state for each new session
● Memory isolation is the same as fork
● Small differences anticipated, stored efficiently (diff)

● Event loop allows shared execution state
● Allows light weight context switches

79

worker_N

worker_1

Web Server Architecture

Database

netd demux ahttpd-idd

db-proxy
worker_1

worker1

worker_N
workerN

80

Experimental Setup – Memory

/shopping_cart.cgi

Hmm

● Active session – Adding an
item to the shopping cart

● Cached session – Deciding if
you really want an item

● How much memory do event processes use?
● Shopping cart application

– Session state stored in event process
– One event process per user

Click!

81

Event Processes Conserve
Memory

● Includes user and kernel memory

● Not too many active sessions on a large website

1.45 pages/session

9.48 pages/session

82

Experimental Setup – Throughput
● Simple character generation service

● Not interested in application overhead
● One event process per session (user)

● Compare to Apache & Mod-Apache
● Varied concurrency to get best case performance

● Apache
● Service runs as a CGI script
● Connections are isolated into processes
● Processes are not isolated or jailed on the system

● Mod-Apache
● Service runs inside Apache process

83

● For 16 sessions, 150% of Apache

● For 10,000 session, 75% of Apache

Good Throughput

84

Latency

85

Label Cost Linear in Label Size

● Label cost
starts small
but outstrips
OKWS cost
around 6500
sessions

● Declassifiers
label size
O(#sessions)

86

Conclusion
● Asbestos labels make MAC more practical

● Labels provide decentralized compartment creation &
privilege

● Event processes avoid accumulation of contamination

● The OK web server on Asbestos

● Performs comparably to Apache
● Provides better security properties than Apache

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Virtual Machine Isolation
	Slide 20
	Information Flow Control Systems
	Approaches
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Basic Example
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Implementing Clearance Checks
	Limiting Bug Impact
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Application Defined Policies
	Compartment Creation
	Slide 43
	Slide 44
	Slide 45
	Declassify Receive
	Optional Labels
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Contaminate Send
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	CGI Setup
	Bob Setup
	Slide 63
	Label Implementation
	Declassification
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Other Label Features
	Slide 75
	Combating Process Over-Contamination
	Event Loop
	Event Process Abstraction
	Web Server Architecture
	Experimental Setup – Memory
	Event Processes Conserve Memory
	Experimental Setup – Throughput
	PowerPoint Presentation
	Slide 84
	Label Cost Linear in Label Size
	Conclusion

