Classic Systems:
Unix and THE

Presented by Hakim Weatherspoon

M. Satyanarayanan

Systems faculty at Carnegie-Mellon University

Andrew Project

— Distributed computing environment begun in 1983
— IT joint venture between CMU and IBM
— Focused on workstations: client-server

Lead Andrew File System

Inspired CODA and another 20 years of
research

The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson

« Background of authors at Bell Labs
— Both won Turing Awards in 1983

 Dennis Ritchie

— Key developer of The C Programming Lanuage, Unix,
and Multics

« Ken Thompson

— Key developer of the B programming lanuage, Unix,
Multics, and Plan 9

— Also QED, ed, UTF-8

The UNIX

1969

1971 to 1973

1974 to 1975

1978

1979

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

1990
1991

1992

1993
1994

1995
1996
1997

1998

1999

2000
2001 to 2004

2005
2006 to 2008

BSD
1.0t02.0

- Open Source
I:I Mixed/Shared Source

- Closed Source

BSD
3.0t0 4.1

(Unix TSS

Unix TSS
(Time Sharing
System)

9to 10

BSD NET/
2
386BSD

Linux
0.95t0 1.2.x
Free BSD
1.0t02.2.x

Free BSD
3.0t03.2

Linux
20t02.6.x

Free BSD

Mac OS X 33t07.0

10.0t0 10.5

BSD

BSD 4.3
Tahoe

BSD 4.3
Reno

Net BSD

BSD 0.8t01.0

4.4t04.4lite
2

Net BSD
11t01.2

Net BSD
1.3

Unix 32v

N

OpenBSD
1.0t022

OpenBSD
23to4x

Open Solaris

2008.05

Time-Sharing System

Dennis Ritchie and Ken Thompson

1969

1971 t0 1973

1974 to 1975

1978

1979

1980

1981
1982
1983
1984

1985
1986
1987
1988
1989

1990
1991

1992

1993
1994

1995
1996
1997

1998

1999

2000
2001 to 2004

2005
2006 to 2008

The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson

1970 1980 1990 2000 Time N
| FreeBSD 7.2|
. | NetBSD 5.0
BSD family [te |
—»{Openeso 4.s|

—>| BSD (Berkeley Software Distribution) l

Bill
Lioy —>|5unos (Stanford) ISoIaris (SUN) 10 5/09]

Darwin
> NextStep 3.3
Y Mac0S X 5.7 |

! Xenix 05 |

Microsoft/SCO GNU/Hurd K16_

GNU Project
2.6.30.1

Richard Stallman '_>| GNU/Linux

>IrMinix : Linus Torvalds 5t
Andrew S, Tanenbaum 77T 7 -
Unix Time-Sharing System (Bell Labs) 10|
Ken Thompson =
Dennis Ritchie (C language) > HP-UX 11iv3|

AlX (IBM) 6.I1J
='| UnixWare (Univel/SCO) 7.1.4 MP4|
=]| IRIX (SGI) 6.5.30|

System Il & V family

The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson

« Classic system and paper
— described almost entirely in 10 pages

« Key idea

— elegant combination of a few concepts that fit together
well

System features

Time-sharing system

Hierarchical file system

Device-independent I/O

Shell-based, tty user interface

Filter-based, record-less processing paradigm

Version 3 Unix

1969: Version 1 ran PDP-7

1971: Version 3 Ran on PDP-11’s
— Costing as little as $40k!

< 50 KB
2 man-years to write
Written in C

File System

* Ordinary files (uninterpreted)

* Directories (protected ordinary files)
« Special files (1/O)

Directories

root directory

path names

rooted tree

current working directory
back link to parent

multiple links to ordinary files

Special Files

 Uniform I/O model

— Each device associated with at least one file
— But read or write of file results in activation of device

* Advantage: Uniform naming and protection model

— File and device |/O are as similar as possible

— File and device names have the same syntax and
meaning, can pass as arguments to programs

— Same protection mechanism as regular files

Removable File System

 Tree-structured

 Mounted on an ordinary file

— Mount replaces a leaf of the hierarchy tree (the
ordinary file) by a whole new subtree (the hierarchy
stored on the removable volume)

— After mount, virtually no distinction between files on
permanent media or removable media

bin dev lib mnt usr b%
(b)

(a)

Protection

« User-world, RWX bits
» set-user-id bit
* super user is just special user id

Uniform I/O Model

* open, close, read, write, seek
— Uniform calls eliminates differences between devices

» other system calls
— close, status, chmod, mkdir, In

* bytes, no records

File System Implementation

table of i-nodes

path name scanning

mount table
buffered data
write-behind

open (file name)

A
B o

I
LI

irectory structure

directory structure

file-control block

user space

kernel memory

(@)

secondary storage

read (index)

index

>

-

per-process
open-file table

system-wide

0

open-file table

[1]
[]

data blocks

0

file-control block

user space

kernel memory

(b)

secondary storage

l-node Table

* short, unique name that points at file info.
 allows simple & efficient fsck
» cannot handle accounting issues

File name | Inode# | T > | Inode

Processes and images

text, data & stack segments
process swapping

pid = fork()

pipes

exec(file, arg1, ..., argn)

pid = wait()

exit(status)

The Shell

cmd arg1 ... argn

stdio & I/O redirection

filters & pipes

multi-tasking from a single shell
shell is just a program

Trivial to implement in shell
— Redirection, background processes, cmd files, etc

Traps

« Hardware interrupts
« Software signals
* Trap to system routine

Perspective

* Not designed to meet predefined objective

* (Goal: create a comfortable environment to
explore machine and operating system

» Other goals
— Programmer convenience
— Elegance of design
— Self-maintaining

"THE"-Multiprogramming System
Edsger W. Dijkstra

* Received Turing Award in 1972

 Contributions

— Shortest Path Algorithm, Reverse Polish Notation,
Bankers algorithm, semaphore’s, self-stabilization

* Known for disliking ‘goto’ statements and using
computers!

"THE"-Multiprogramming System
Edsger W. Dijkstra

 Never named “THE" system; instead, abbreviation
for "Technische Hogeschool Eindhoven”

« Batch system (no human intervention) that
supported multitasking (processes share CPU)

— THE was not multiuser

 |ntroduced
— software-based memory segmentation
— Cooperating sequential processes
— semaphores

Design

Layered structure
— Later Multics has layered structure, ring segmentation

Layer O — the scheduler
— Allocated CPU to processes, accounted for blocked proc’s

_ayer 1 — the pager

_ayer 2 — communication between OS and console
_ayer 3 — managed |/O

_ayer 4 — user programs

_ayer 5 — the user

Perspective

* Layered approach
— Design small, well defined layers

— Higher layers dependent on lower ones
* Helps prove correctness
* Helps with debugging

« Sequential process and Semaphores

Next Time

Read and write review:
Do Lab 1 due yesterday

Project Proposal due this Thursday
— Email and talk to me before Thursday

Check website for updated schedule

