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M. Satyanarayanan

Systems faculty at Carnegie-Mellon University

Andrew Project

— Distributed computing environment begun in 1983
— IT joint venture between CMU and IBM
— Focused on workstations: client-server

Lead Andrew File System

Inspired CODA and another 20 years of
research



The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson

« Background of authors at Bell Labs
— Both won Turing Awards in 1983

 Dennis Ritchie

— Key developer of The C Programming Lanuage, Unix,
and Multics

« Ken Thompson

— Key developer of the B programming lanuage, Unix,
Multics, and Plan 9

— Also QED, ed, UTF-8
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The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson
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The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson

« Classic system and paper
— described almost entirely in 10 pages

« Key idea

— elegant combination of a few concepts that fit together
well



System features

Time-sharing system

Hierarchical file system

Device-independent I/O

Shell-based, tty user interface

Filter-based, record-less processing paradigm



Version 3 Unix

1969: Version 1 ran PDP-7

1971: Version 3 Ran on PDP-11’s
— Costing as little as $40k!

< 50 KB
2 man-years to write
Written in C



File System

* Ordinary files (uninterpreted)

* Directories (protected ordinary files)
« Special files (1/O)



Directories

root directory

path names

rooted tree

current working directory
back link to parent

multiple links to ordinary files



Special Files

 Uniform I/O model

— Each device associated with at least one file
— But read or write of file results in activation of device

* Advantage: Uniform naming and protection model

— File and device |/O are as similar as possible

— File and device names have the same syntax and
meaning, can pass as arguments to programs

— Same protection mechanism as regular files



Removable File System

 Tree-structured

 Mounted on an ordinary file

— Mount replaces a leaf of the hierarchy tree (the
ordinary file) by a whole new subtree (the hierarchy
stored on the removable volume)

— After mount, virtually no distinction between files on
permanent media or removable media

bin dev lib mnt  usr b%
(b)

(a)



Protection

« User-world, RWX bits
» set-user-id bit
* super user is just special user id



Uniform I/O Model

* open, close, read, write, seek
— Uniform calls eliminates differences between devices

» other system calls
— close, status, chmod, mkdir, In

* bytes, no records



File System Implementation

table of i-nodes

path name scanning

mount table
buffered data
write-behind

open (file name)
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l-node Table

* short, unique name that points at file info.
 allows simple & efficient fsck
» cannot handle accounting issues

File name | Inode# | T > | Inode




Processes and images

text, data & stack segments
process swapping

pid = fork()

pipes

exec(file, arg1, ..., argn)

pid = wait()

exit(status)



The Shell

cmd arg1 ... argn

stdio & I/O redirection

filters & pipes

multi-tasking from a single shell
shell is just a program

Trivial to implement in shell
— Redirection, background processes, cmd files, etc



Traps

« Hardware interrupts
« Software signals
* Trap to system routine



Perspective

* Not designed to meet predefined objective

* (Goal: create a comfortable environment to
explore machine and operating system

» Other goals
— Programmer convenience
— Elegance of design
— Self-maintaining



"THE"-Multiprogramming System
Edsger W. Dijkstra

* Received Turing Award in 1972

 Contributions

— Shortest Path Algorithm, Reverse Polish Notation,
Bankers algorithm, semaphore’s, self-stabilization

* Known for disliking ‘goto’ statements and using
computers!



"THE"-Multiprogramming System
Edsger W. Dijkstra

 Never named “THE" system; instead, abbreviation
for "Technische Hogeschool Eindhoven”

« Batch system (no human intervention) that
supported multitasking (processes share CPU)

— THE was not multiuser

 |ntroduced
— software-based memory segmentation
— Cooperating sequential processes
— semaphores



Design

Layered structure
— Later Multics has layered structure, ring segmentation

Layer O — the scheduler
— Allocated CPU to processes, accounted for blocked proc’s

_ayer 1 — the pager

_ayer 2 — communication between OS and console
_ayer 3 — managed |/O

_ayer 4 — user programs

_ayer 5 — the user




Perspective

* Layered approach
— Design small, well defined layers

— Higher layers dependent on lower ones
* Helps prove correctness
* Helps with debugging

« Sequential process and Semaphores



Next Time

Read and write review:
Do Lab 1 due yesterday

Project Proposal due this Thursday
— Email and talk to me before Thursday

Check website for updated schedule



