
Novel File Systems:
The Evolution of Coda

Presented by Hakim Weatherspoon

M. Satyanarayanan

•  Systems faculty at Carnegie-Mellon University
•  Andrew Project

–  Distributed computing environment begun in 1983
–  IT joint venture between CMU and IBM
–  Focused on workstations: client-server

•  Lead Andrew File System
•  Inspired CODA and another 20 years of

research

Paper overview

•  Reviews the multiple contributions of Coda:
–  Optimistic replication
–  Trickle reintegration to support weakly connected

workstations
–  Isolation-only transactions
–  Operation shipping

•  Ends with a few lessons learned

Motivation for Coda

•  Epilogue to the Andrew File System (AFS)
•  AFS was found to be vulnerable to

server and network failures
–  Not that different from NFS
–  Limits scalability of AFS

•  Coda addresses these problems through
optimistic replication

Timeline

Lessons Learned
from 20 years of Coda

•  Optimistic replication can work
–  Must use for performance

•  Real systems research needs
–  Real system artifacts
–  Real users

•  Timing
–  Need to be lucky

•  Research vs product
–  Long ‘product’ tail

•  Moores law
–  Worked then. Does it work now?

Lessons Learned
from 20 years of Coda

•  Code reuse is a double edged sword
–  Good initially, but locks you into a particular regime

•  Need system admins
–  Deeply held secret

•  Small projects never die
–  Also small features hard to remove

Server Replication: 1987-1991

•  Optimistic replication control protocols allow
access in disconnected mode
–  Tolerate temporary inconsistencies
–  Promise to detect them later
–  Provide much higher data availability

•  Optimistic replication control requires a reliable
tool for detecting inconsistencies among replicas
–  Better than LOCUS tool

Server Replication

•  Unit of replication is volume (subtree of files)
•  Set of servers containing replicas of a volume is

volume storage group (VSG)
•  Currently accessible subset of VSG is

accessible volume storage group (AVSG)
–  Tracked by cache manager of client (Venus):

Read protocol

•  Read-one-data, read-all-status, write-all
•  Each client

–  Has a preferred server (VS)
–  Still checks with other servers to find which one

has the latest version of a file
•  Reads are aborted if a conflict is detected
•  Otherwise a callback is established with all

servers in AVSG

Read protocol

Client Structure

System call interface

Vnode interface
Coda MiniCache
(handles local accesses)

Application
Venus

(connects with Coda servers)

Update protocol

•  When a file is closed after modification,
updated file is transferred in parallel to all
members of the AVSG

•  Directory updates are also written through to
all members of AVSG

•  Coda checks for replica divergence before
and after each update

•  Update protocol is non-blocking

Update protocol

Consistency model

•  Client keeps track of subset s of servers it was
able to connect the last time it tried

•  Updates s at least every τ seconds
•  At open time, client checks it has the most

recent copy of file among all servers in s
–  Guarantee weakened by use of callbacks
–  Cached copy can be up to τ minutes behind the

server copy

Fault-tolerance

•  Correctness of update protocol requires
atomicity and permanence of metadata
updates

•  Used first Camelot transaction management
system:
–  Too slow and Mach-specific

•  Coda uses instead its own recoverable
virtual memory (RVM)
–  Implemented as a library

LRVM

•  Thesis
–  RVM ... poses and answers the question "What is the

simplest realization of essential transactional
properties for the average application?" By doing so,
it makes transactions accessible to applications that
have hitherto balked at the baggage that comes with
sophisticated transactional facilities.

•  Answer
–  Library implementing No-Steal, No-Force virtual

memory persistence, with manual copy-on-write and
redo-only logs.

LRVM

•  Goal
–  allow Unix applications to manipulate persistent data

structures (such as the meta data for a file system) in
a manner that has clear-cut failure semantics.

•  Existing Solutions
–  Camelot too heavyweight
–  Wanted “lite” solution

•  Do not provide (unneeded) support for distributed and nested
transactions, shared logs, etc.

•  Proposed Solution
–  Library that provides only recoverable virtual memory

LRVM: Lessons from Camelot

•  Overhead significant
–  multiple address spaces
–  constant IPC between them

•  programming constraints
–  Heavyweight facilities impose programming constraints.

•  Size and complexity
–  Camelot too big
–  Too dependent on Mach
–  maintenance headaches and lack of portability

LRVM: Lessons from Camelot

•  Camelot had a object and process model.
–  Its componentization led to lots of IPC.
–  It had poorly tuned log truncation.
–  Was perhaps too much of an embrace of Mach.

•  However, a lot of good learned from Camelot
–  the golden age of CMU Systems learned a lot from

the sharing of artifacts: Mach, AFS, Coda...
–  A lot of positive spirit in this paper.

9/14/09 21

LRVM: Architecture
•  Only addresses the problem of Recovery.
•  Stores Virtual memory in external data segments

found in stable storage.
•  Portable with a library that is linked in with

applications.
•  “Value simplicity over generality” by adopting a

layered approach.
•  Provides independent control over atomicity and

concurrency as well as other problems such as
deadlocks and starvations.

9/14/09 22

Layered Approach of RVM

9/14/09 23

LRVM: Segments and Regions

•  Applications map regions of segments into their
virtual memory.

9/14/09 24

LRVM: Sequence of Operations

•  Select regions in virtual memory to be mapped.
•  Get a global transaction ID.
•  Successful commit saves segments in log.

9/14/09 25

LRVM: Crash Recovery

•  Recovery consists of reading the log from tail to
head and then reconstructing the last committed
changes.

•  Modifications are applied to the external data
segment.

•  Log is emptied.

9/14/09 26

LRVM: Truncation

•  Reclaiming space in the log by applying changes
to the external data segment.

•  Necessary because space is finite.

LRVM: Performance

•  Beats Camelot across the board.
•  Lack of integration with VM does not appear to

be a significant problem as long as ration of
Real/Physical memory doesn't grow too large.

•  Log traffic optimizations provide significant
(though not multiple factors) savings.

9/14/09 28

LRVM: Summary
•  RVM addresses only the problem of recovery in VM

and introduces a “neat” layered structure to address
the other problems

•  manipulate persistent data structures
–  In manner that has clear-cut failure semantics

•  Experience
–  Heavyweight fully general transaction support facility led to

lightweight facility that only provides recoverable virtual mem
•  However,

–  Paper did not show that layered approach can perform well
•  Lesson

–  Bulding OS, do few things well instead of being general

Disconnected Operation:1988-1993

•  Started as tool allowing a client isolated by a
network failure to continue to operate

•  Made possible thanks to
–  Optimistic philosophy
–  File hoarding in client cache

•  Gained importance with arrival of portable
computers
–  Resulted in voluntary disconnections

Disconnected Operation

•  File Hoarding:
–  Coda allows user to specify which files should always

remain cached on her workstation and to assign
priorities to these files

•  When workstation gets reconnected, Coda
initiates a reintegration process
–  Changes are propagated and inconsistencies

detected

Disconnected Operation

•  Disconnected operation mode complements but
does not replace server replication
–  Cached replicas are only available when client

workstation is turned on
–  Make server replicas primary replicas and cached

replicas secondary replicas

Implementation
•  Three states:
1.  Hoarding:

Normal operation mode
2.  Emulating:

Disconnected operation mode
3.  Reintegrating:

Propagates changes and detects
inconsistencies

Implementation

Hoarding

Emulating Recovering

Implementation

•  Coda maintains a per-client hoard database
(HDB) specifying files to be cached on client
workstation

–  Client can modify HDB and even set up hoard
profiles

Implementation

•  In disconnected mode:
–  Attempts to access files that are not in the client

caches appear as failures to application
–  All changes are written in a persistent log,

the client modification log (CML)
–  Venus removes from log all obsolete entries like

those pertaining to files that have been deleted

Conflict Resolution: 1988-1995

•  Coda provides automatic resolution of simple
directory update conflicts

•  Other conflicts are to be resolved manually by
the user

Objectives

•  No updates should ever be lost without explicit
user approval: conflicts must be detected
–  Do they ensure this?

•  The common case of no conflict should be fast
–  Is it?

•  Conflicts are ultimately an application-specific
concept: think of updates to a schedule

•  The buck stops with the user: automatic conflict
resolution cannot solve all problems

Approaches to conflict
resolution

•  Syntactic approach:
–  Uses version information
–  Fast and efficient
–  Weak in their ability to resolve conflict

•  Semantic approach:
–  Slower but more powerful

Coda solution

•  Coda uses
–  Syntactic approach to detect absence of conflicts
–  Semantic approach to resolve possible conflicts

Directory conflict resolution

•  Always automatic
•  Uses a log-based
•  Two cases to consider

–  After disconnected operation
–  Across conflicting replicas

After disconnected operation

•  Each server tries to apply the client
modification log (CML) send by the client
during reintegration

•  If this attempt fails, client directory is marked in
conflict.

Across divergent replicas

•  Each server replicas of a volume has a
resolution log containing entire list of directory
operations
–  In reality, it is frequently truncated
–  Remains almost empty when there are no failures

•  Recovery protocol locks the replicas merges the
logs and distributes the merged logs.

Other solutions
•  Must keep track of partial deletes:

–  If one of the two replicas has a directory A, does it
correspond to a file

1.  recently created, or
2.  recently deleted.

•  Must keep ghost entries for directory entries
that were recently removed

–  Hard to know when these entries can be purged

Application-Specific
File Resolution

•  Entirely done at client

Conflict representation

•  Coda displays read-only versions of inconsistent
objects

Frequency of conflicts

•  Probability of two different users modifying the
same object less than a day apart is less than
0.0075

Weakly Connected Operation:
1993-1996

•  Broad principles
–  Do not punish strongly connected clients
–  Do not make life worse when disconnected
–  Do it in the background if you can

•  Rapid validation of cache
•  Trickle Reintegration

Lessons Learned
from 20 years of Coda

•  Optimistic replication can work
–  Must use for performance

•  Real systems research needs
–  Real system artifacts
–  Real users

•  Timing
–  Need to be lucky

•  Research vs product
–  Long ‘product’ tail

•  Moores law
–  Worked then. Does it work now?

Lessons Learned
from 20 years of Coda

•  Code reuse is a double edged sword
–  Good initially, but locks you into a particular regime

•  Need system admins
–  Deeply held secret

•  Small projects never die
–  Also small features hard to remove

Next Time

•  Read and write review:

•  Do Lab 1 due tomorrow

•  Project Mtg today at 2:30pm in Systems Lab

•  Check website for updated schedule

