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Overview

* Original UNIX file system

 Two systems to improve file system
performance

* Fast File System
* Log-Structured File System

e Conclusions



File system on disk
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Performance Problems

 Lots of disk seeks

* Inodes are far away from data blocks
 Lots of indirection

« Small block size (512 bytes)
* Fragmentation

 Even more disk seeks
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Fast File System

» Less disk seeking = better performance

 Become “disk-aware”
» Better placement of data on disk
* Cylinder groups
* Layout policies

* |[ncrease block size



Cylinder Groups

» Split disk into groups, each with
* Super block copy (for redundancy)
* inode/data block bitmap

 |[nodes
 Data blocks

* Try not to seek very far



Layout Policies

» Keep related files together
* |Inodes for files in same directory

* Don't fill entire cylinder group with single large
file



Rotation-aware placement

» Factor in time for disk spinning for layout

* Time to service interrupts and wait for new transfer
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FFS Discussion

 Become disk aware
 Complex layout policies
* Rotation-aware doesn't make sense today

 Disks have caches w/ read-ahead
 Still lots of small seeks for file updates

* Not as good as sequential file access
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LFS Motivation

 More memory means bigger FS cache

 Writes dominate 1/O
 Writes can be buffered and batched

 Random vs. sequential I/O gap increasing
* Big win with sequential I/0O

» Updates are expensive for traditional FS
e Such as FFS



LFS in a nutshell

» Boost write throughput by writing all
changes to disk contiguously

* Disk as an array of blocks, append at end
* Write data, indirect blocks, inodes together
* No need for a free block map

* Writes are written in segments
e ~1MB of continuous disk blocks
 Accumulated in cache and flushed at once
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Log operation
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Locating inodes

» Positions of data blocks and inodes
change on each write

* Write out inode, indirect blocks too!

* Maintain an inode map
 Compact enough to fit in main memory
* Written to disk periodically at checkpoints
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Cleaning the log

* Log is infinite, but disk is finite
* Reuse the old parts of the log

* Clean old segments to recover space
* Writes to disk create holes
« Segments ranked by "liveness", age
 Segment cleaner "runs in background"”

* Group slowly-changing blocks together
 Copy to new segment or "thread" into old
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Cleaning policies

« Simulations to determine best policy
e Greedy: clean based on low utilisation
o Cost-benefit: use age (time of last write)

- Hot vs. cold
benefit _ (free space generated)* (age of segment)
cost cost

e Measure write cost

e Time disk is busy for each byte written
e Write cost 1.0 = no cleaning
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Greedy versus
Cost-benefit
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Cost-benefit segment
utilisation
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LFS performance

* Cleaning behaviour better than
simulated predictions

* Performance compared to SunOS FFS
e Create-read-delete 10000 1Kk files

* Write 100-MB file sequentially, read back
sequentially and randomly
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Small-file performance

Key:
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Large-file performance
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Summary

* Both increased performance and were
influential

» FFS
e Optimize existing FS
e LFS

* Rethink FS
 How expensive is cleaning?
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