

File Systems: FFS and LFS

A Fast File System for UNIX
McKusick, Joy, Leffler, Fabry

TOCS 1984

The Design and Implementation of a Log-
Structured File System

Rosenblum and Ousterhout
SOSP 1991

Presented by: Dan Williams
(some slides borrowed from Ken Birman, Ben Atkin)

Overview

● Original UNIX file system
● Two systems to improve file system

performance
● Fast File System
● Log-Structured File System

● Conclusions

3

File system on disk

......

super block
disk layout,
Pointer to
free list

inodes data blocks

4

Inodes
file size

link count

access times

...

data blocks

indirect block

double indirect

triple indirect

data

data

data

data

...

...

...

data

data

data

data

...

...

data

data

data

data

...

...

Performance Problems

● Lots of disk seeks
● Inodes are far away from data blocks

● Lots of indirection
● Small block size (512 bytes)

● Fragmentation
● Even more disk seeks

Overview

● Original UNIX file system
● Two systems to improve file system

performance
● Fast File System
● Log-Structured File System

● Conclusions

Fast File System

● Less disk seeking = better performance
● Become “disk-aware”

● Better placement of data on disk
● Cylinder groups
● Layout policies

● Increase block size

Cylinder Groups

● Split disk into groups, each with
● Super block copy (for redundancy)
● inode/data block bitmap
● Inodes
● Data blocks

● Try not to seek very far

Layout Policies

● Keep related files together
● Inodes for files in same directory

● Don't fill entire cylinder group with single large
file

Rotation-aware placement

● Factor in time for disk spinning for layout
● Time to service interrupts and wait for new transfer

Rotation-aware placement

● Factor in time for disk spinning for layout
● Time to service interrupts and wait for new transfer

Rotation-aware placement

● Factor in time for disk spinning for layout
● Time to service interrupts and wait for new transfer

FFS Discussion

● Become disk aware
● Complex layout policies
● Rotation-aware doesn't make sense today

● Disks have caches w/ read-ahead

● Still lots of small seeks for file updates
● Not as good as sequential file access

Overview

● Original UNIX file system
● Two systems to improve file system

performance
● Fast File System
● Log-Structured File System

● Conclusions

LFS Motivation

● More memory means bigger FS cache
● Writes dominate I/O
● Writes can be buffered and batched

● Random vs. sequential I/O gap increasing
● Big win with sequential I/O

● Updates are expensive for traditional FS
● Such as FFS

16

LFS in a nutshell

● Boost write throughput by writing all
changes to disk contiguously
● Disk as an array of blocks, append at end
● Write data, indirect blocks, inodes together
● No need for a free block map

● Writes are written in segments
● ~1MB of continuous disk blocks
● Accumulated in cache and flushed at once

17

Log operation

inode blocks data blocks

active segment

log

Kernel buffer
cache

log head log tail

Disk

18

Locating inodes

● Positions of data blocks and inodes
change on each write
● Write out inode, indirect blocks too!

● Maintain an inode map
● Compact enough to fit in main memory
● Written to disk periodically at checkpoints

19

Cleaning the log

● Log is infinite, but disk is finite
● Reuse the old parts of the log

● Clean old segments to recover space
● Writes to disk create holes
● Segments ranked by "liveness", age
● Segment cleaner "runs in background"

● Group slowly-changing blocks together
● Copy to new segment or "thread" into old

20

Cleaning policies

● Simulations to determine best policy
● Greedy: clean based on low utilisation
● Cost-benefit: use age (time of last write)

– Hot vs. cold

● Measure write cost
● Time disk is busy for each byte written
● Write cost 1.0 = no cleaning

benefit
cost

(free space generated)*(age of segment)
cost

=

21

Greedy versus
Cost-benefit

22

Cost-benefit segment
utilisation

23

LFS performance

● Cleaning behaviour better than
simulated predictions

● Performance compared to SunOS FFS
● Create-read-delete 10000 1k files
● Write 100-MB file sequentially, read back

sequentially and randomly

24

Small-file performance

25

Large-file performance

Summary

● Both increased performance and were
influential

● FFS
● Optimize existing FS

● LFS
● Rethink FS
● How expensive is cleaning?

	Slide 1
	Slide 2
	File system on disk
	File representation
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	LFS in a nutshell
	Log operation
	Locating inodes
	Cleaning the log
	Cleaning policies
	Greedy versus Cost-benefit
	Cost-benefit segment utilisation
	LFS performance
	Small-file performance
	Large-file performance
	Slide 26

