File Systems: FFS and LFS

A Fast File System for UNIX
McKusick, Joy, Leffler, Fabry
TOCS 1984

The Design and Implementation of a Log-
Structured File System
Rosenblum and Ousterhout
SOSP 1991

Presented by: Dan Williams
(some slides borrowed from Ken Birman, Ben Atkin)

Overview

* Original UNIX file system

 Two systems to improve file system
performance

* Fast File System
* Log-Structured File System

e Conclusions

File system on disk

?&per block inodes Fléta blocks‘
disk layout,
Pointer to

free list

Inodes

file size
link count A data
access times Jdata ‘data
data blocks 5 data @ A data
; data
o data
: /7 data : 1_
=l == data » data
indirect block _./7 :
double indireckd| ; T data
triple indirect [/] —

NENNR

Performance Problems

 Lots of disk seeks

* Inodes are far away from data blocks
 Lots of indirection

« Small block size (512 bytes)
* Fragmentation

 Even more disk seeks

Overview

* Original UNIX file system

 Two systems to improve file system
performance

 Fast File System
* Log-Structured File System

e Conclusions

Fast File System

» Less disk seeking = better performance

 Become “disk-aware”
» Better placement of data on disk
* Cylinder groups
* Layout policies

* |[ncrease block size

Cylinder Groups

» Split disk into groups, each with
* Super block copy (for redundancy)
* inode/data block bitmap

 |[nodes
 Data blocks

* Try not to seek very far

Layout Policies

» Keep related files together
* |Inodes for files in same directory

* Don't fill entire cylinder group with single large
file

Rotation-aware placement

» Factor in time for disk spinning for layout

* Time to service interrupts and wait for new transfer

oY)

Rotation-aware placement

» Factor in time for disk spinning for layout

* Time to service interrupts and wait for new transfer

oY o)

Rotation-aware placement

» Factor in time for disk spinning for layout

* Time to service interrupts and wait for new transfer

oY)

FFS Discussion

 Become disk aware
 Complex layout policies
* Rotation-aware doesn't make sense today

 Disks have caches w/ read-ahead
 Still lots of small seeks for file updates

* Not as good as sequential file access

Overview

* Original UNIX file system

* Two systems to improve file system
performance

 Fast File System
 Log-Structured File System

e Conclusions

LFS Motivation

 More memory means bigger FS cache

 Writes dominate 1/O
 Writes can be buffered and batched

 Random vs. sequential I/O gap increasing
* Big win with sequential I/0O

» Updates are expensive for traditional FS
e Such as FFS

LFS in a nutshell

» Boost write throughput by writing all
changes to disk contiguously

* Disk as an array of blocks, append at end
* Write data, indirect blocks, inodes together
* No need for a free block map

* Writes are written in segments
e ~1MB of continuous disk blocks
 Accumulated in cache and flushed at once

16

Log operation

Kernel buffer

———cache
inode blocks data blocks
EEE--___ JUIL
=21 /7
. LAY
active segment S
[] B BT
< \ Disk
log \
N EEE B
"log head “eeenfog tail

—

Locating inodes

» Positions of data blocks and inodes
change on each write

* Write out inode, indirect blocks too!

* Maintain an inode map
 Compact enough to fit in main memory
* Written to disk periodically at checkpoints

18

Cleaning the log

* Log is infinite, but disk is finite
* Reuse the old parts of the log

* Clean old segments to recover space
* Writes to disk create holes
« Segments ranked by "liveness", age
 Segment cleaner "runs in background"”

* Group slowly-changing blocks together
 Copy to new segment or "thread" into old

19

Cleaning policies

« Simulations to determine best policy
e Greedy: clean based on low utilisation
o Cost-benefit: use age (time of last write)

- Hot vs. cold
benefit _ (free space generated)* (age of segment)
cost cost

e Measure write cost

e Time disk is busy for each byte written
e Write cost 1.0 = no cleaning

20

Greedy versus
Cost-benefit

Write cost

———— i —— " —]]

12.0 -
5 LFS Greedy

10.0 -4
8.0 -
6.0 /o,

7Y E——— A - T

2.0 :

00 02 04 06 08 1.0

Disk capacity utilization

. FFS today

21

Cost-benefit segment
utilisation

Fraction of segments | |
0.008 —{ TR
0.007 -1 *
0.006 -
0.005 -
0.004 -
0.003 -
0.002 -
0.001 -

0.000 7y~
00 02 04 06 08 1.0
Segment utilization

_LFS Cost-Benefit

i LFS Greedy

22

LFS performance

* Cleaning behaviour better than
simulated predictions

* Performance compared to SunOS FFS
e Create-read-delete 10000 1Kk files

* Write 100-MB file sequentially, read back
sequentially and randomly

23

Small-file performance

Key:

Files/sec {(measured)

180

.| Sprite LFS

140 |-
120 |-
100 |-
80 |---
60 -
40 |-
20 |---

0

[———

2

-

- -

Create

10000 1K file access

(a)

Sun(QS

675

-~ 600
- 525
-~ 450
-~ 375
= 150 |-
75 }--

Files/sec (predicted)

Sun4d 2*Sund 4*Sun4d
10000 1K file create

(b)

24

Large-file performance

kilobytes/sec % Sprite LFS | SunOS

i Gk "~
Q) e L e

200 |1
22 1 N |

100 |-+# 4.
i

k.

200 :ﬁf%/::ﬁ:ﬁﬁfﬁ:ﬁ:ﬁi::% I
% % """"""" . %
300 |- % % ..

S SCEE=N

Write Read Write Read Reread
Sequential Random Sequential

25

Summary

* Both increased performance and were
influential

» FFS
e Optimize existing FS
e LFS

* Rethink FS
 How expensive is cleaning?

	Slide 1
	Slide 2
	File system on disk
	File representation
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	LFS in a nutshell
	Log operation
	Locating inodes
	Cleaning the log
	Cleaning policies
	Greedy versus Cost-benefit
	Cost-benefit segment utilisation
	LFS performance
	Small-file performance
	Large-file performance
	Slide 26

