
Concurrency,
Threads, and Events

Robbert van Renesse

Using Threads in Interactive Systems: A
Case Study (Hauser et al 1993)

– Analyzes two interactive computing systems
– Classifies thread usage
– Finds that programmers are still struggling

•  (pre-Java)

– Limited scheduling support
•  Priority-inversion

SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services

(Welsh, 2001)

– Analyzes threads vs event-based systems, finds
problems with both

– Suggests trade-off: stage-driven architecture
– Evaluated for two applications

•  Easy to program and performs well

What is a thread?

•  A traditional “process” is an address space
and a thread of control.

•  Now add multiple thread of controls
– Share address space
–  Individual program counters and stacks

•  Same as multiple processes sharing an
address space.

Thread Switching

•  To switch from thread T1 to T2:
– Thread T1 saves its registers (including pc) on

its stack
– Scheduler remembers T1’s stack pointer
– Scheduler restores T2’ stack pointer
– T2 restores its registers
– T2 resumes

Thread Scheduler

•  Maintains the stack pointer of each thread
•  Decides what thread to run next

– E.g., based on priority or resource usage
•  Decides when to pre-empt a running thread

– E.g., based on a timer
•  Needs to deal with multiple cores

– Didn’t use to be the case
•  “fork” creates a new thread

Synchronization Primitives

•  Semaphores
–  P(S): block if semaphore is “taken”
–  V(S): release semaphore

•  Monitors:
–  Only one thread active in a module at a time
–  Threads can block waiting for some condition using the

WAIT primitive
–  Threads need to signal using NOTIFY or

BROADCAST

Uses of threads

•  To exploit CPU parallelism
– Run two CPUs at once in the same program

•  To exploit I/O parallelism
– Run I/O while computing, or do multiple I/O
–  I/O may be “remote procedure call”

•  For program structuring
– E.g., timers

Hauser’s categorization

•  Defer Work: asynchronous activity
– Print, e-mail, create new window, etc.

•  Pumps: pipeline components
– Wait on input queue; send to output queue
– E.g., slack process: add latency for buffering

•  Sleepers & one-shots
– Periodic activity & timers

Categorization, cont’d

•  Deadlock Avoiders
– Avoid deadlock through ordered acquisition of

locks
– When needing more locks, roll-back and re-

acquire
•  Task Rejuvenation: recovery

– Start new thread when old one dies, say
because of uncaught exception

Categorization, cont’d

•  Serializers: event loop
–  for (;;) { get_next_event(); handle_event(); }

•  Concurrency Exploiters
– Use multiple CPUs

•  Encapsulated Forks
– Hidden threads used in library packages
– E.g., menu-button queue

Common Problems

•  Priority Inversion
–  High priority thread waits for low priority thread
–  Solution: temporarily push priority up (rejected??)

•  Deadlock
–  X waits for Y, Y waits for X

•  Incorrect Synchronization
–  Forgetting to release a lock

•  Failed “fork”
•  Tuning

–  E.g. timer values in different environment

Criticism of Hauser

•  Systems old but/and not representative
•  Pre-Java

What is an Event?

•  An object queued for some module
•  Operations:

–  create_event_queue(handler) EQ
–  enqueue_event(EQ, event-object)

•  Invokes, eventually, handler(event-object)

•  Handler is not allowed to block
– Blocking could cause entire system to block
– But page faults, garbage collection, …

Example Event System

(Also common in telecommunications industry, where it’s
called “workflow programming”)

Event Scheduler

•  Decides which event queue to handle next.
– Based on priority, CPU usage, etc.

•  Never pre-empts event handlers!
– No need for stack / event handler

•  May need to deal with multiple CPUs

Synchronization?

•  Handlers cannot block no
synchronization

•  Handlers should not share memory
– At least not in parallel

•  All communication through events

Uses of Events

•  CPU parallelism
– Different handlers on different CPUs

•  I/O concurrency
– Completion of I/O signaled by event
– Other activities can happen in parallel

•  Program structuring
– Not so great…
– But can use multiple programming languages!

Hauser’s categorization ?!

•  Defer Work: asynchronous activity
– Send event to printer, etc

•  Pumps: pipeline components
– Natural use of events!

•  Sleepers & one-shots
– Periodic events & timer events

Categorization, cont’d

•  Deadlock Avoiders
– Ordered lock acquisition still works

•  Task Rejuvenation: recovery
– Watchdog events?

Categorization, cont’d

•  Serializers: event loop
– Natural use of events and handlers!

•  Concurrency Exploiters
– Use multiple CPUs

•  Encapsulated Events
– Hidden events used in library packages
– E.g., menu-button queue

Common Problems

•  Priority inversion, deadlock, etc. much the
same with events

Threaded Server Throughput

Event-driven Server Throughput

Threads vs. Events

•  Events-based systems use fewer resources
– Better performance (particularly scalability)

•  Event-based systems harder to program
– Have to avoid blocking at all cost
– Block-structured programming doesn’t work
– How to do exception handling?

•  In both cases, tuning is difficult

SEDA

•  Mixture of models of threads and events
•  Events, queues, and “pools of event

handling threads”.
•  Pools can be dynamically adjusted as need

arises.

SEDA Stage

Best of both worlds

•  Ease of programming of threads
– Or even better

•  Performance of events
– Or even better

