Here is a set of exercises in stream-of-consciousness style. The topics progress backwards, with more recent material at the beginning and earlier material at the end.

Consult freely, both inanimate and animate resources are fine, but please reference your sources and write up your answers individually.

1 Inference Rules for FDs

Recall the set \(\{FD_1, FD_2, FD_3\} \) of inference rules for Functional Dependencies:

\[
\frac{X \rightarrow X}{X \rightarrow Y}
\]

\[
\frac{X \rightarrow YZ}{X \rightarrow Y}
\]

\[
\frac{X \rightarrow YZ \quad Z \rightarrow W}{X \rightarrow YZW}
\]

We showed these rules to be sound and complete. A set \(S \) of inference rules is independent if every proper subset \(S' \subset S \) is strictly weaker than \(S \); that is, if for every \(S' \) there exists a set \(F \) of constraints and a constraint \(f \) such that

\[
F \vdash_S f \quad \text{but not} \quad F \vdash_{S'} f
\]

The focus here is a bit different from lecture: here we concentrate on the size of the set \(S \) of inference rules, rather than on size of the set \(F \) of FDs.

Problem 1a: Show that the set \(\{FD_1, FD_2, FD_3\} \) is independent.
Problem 1b: Suppose we replace FD_3 by the apparently weaker rule FD_{3a}

\[
\begin{align*}
 X &\rightarrow Y \\
 Y &\rightarrow Z \\
 \hline
 X &\rightarrow YZ
\end{align*}
\]

Is the revised set of rules complete? Justify your answer.

Problem 1c: Suppose we replace FD_{3a} by the still weaker rule FD_{3b}

\[
\begin{align*}
 X &\rightarrow Y \\
 Y &\rightarrow Z \\
 \hline
 X &\rightarrow Z
\end{align*}
\]

Is the revised set of rules complete? Justify your answer.

Yes, I realize this part sort of gives away the answer to the previous part.

2 FD Covers

Recall the length of a FD f is the sum of the lengths of its left- and right-hand sides; that is,

\[
\|X \rightarrow Y\| = |X| + |Y|
\]

The length of a set F of FDs is just the sum of the lengths of all $f \in F$.

Consider a relation scheme $R(A_1 \ldots A_m B_1 \ldots B_n)$. We want to impose the constraint “$A_1 \ldots A_m$ is a superkey;” or, expressed as a FD,

\[
A_1 \ldots A_m \rightarrow A_1 \ldots A_m B_1 \ldots B_n
\]

So we seek a cover, a set of FDs F such that

\[
F^+ = \{ A_1 \ldots A_m \rightarrow A_1 \ldots A_m B_1 \ldots B_n \}^+
\]

Problem 2: What is the minimum-length (“optimum”) cover? What is the maximum-length nonredundant cover, and what is its length (asymptotically as a function of m and n)? Explain your answers.

3 TRC Variants

In the notes we defined TRC expressions by
\[E ::= \{ x(X) \mid F \} \]
where \(FV(F) = \{x\} \)

and showed these are equivalent to DRC. As a corollary the domain-independent TRC expressions are equivalent to RA. For now, call this syntax “TRC-0.”

We also defined a more complicated syntax, with a somewhat restrictive form of range declarations, which we compared to SQL. Here is a revised TRC syntax based on that more complicated definition, but without range declarations (yet). For now, call this syntax “TRC”

\[E ::= \{ A_1 : x_1[B_1] \ldots A_m : x_m[B_m] \mid y_1(Y_1) \ldots y_n(Y_n) \mid F \} \]

We require that the variables \(x_i \) and the free variables of \(F \) are among the variables \(y_j \), and that each \(B_i \) is one of the attributes in \(Y_j \) of the corresponding \(y_j \). Informally, a tuple \(t(A_1 \ldots A_m) \) is in the result of applying such an expression if there exist tuple values \(t_1(Y_1) \ldots t_n(Y_n) \) for which the formula \(F \) is \(\text{true} \), and result \(t \) is constructed by selecting the appropriate \(B_i \) attributes from the \(t_j' \)s.

Problem 3a: Argue that TRC as described above is equivalent to TRC-0; that is, given an expression \(E \) in TRC-0, show how to construct an equivalent expression \(E' \) in TRC, and \textit{vice versa}.

\[E ::= \{ A_1 : x_1[B_1] \ldots A_m : x_m[B_m] \mid y_1(Y_1) \ldots y_n(Y_n) \mid F \} \]

We claimed (with a handwaving proof) the following, which is Theorem 2.7 in [AD93]:

Theorem 2.7: TRC-RD is equivalent to an algebraic language that has all the RA operators except union and does not include relation-valued constants.

You may assume this result below.
Problem 3b: Show that adding union to TRC-RD (to get TRCU-RD) makes it equivalent to RA (with union, but without relation-valued constants). Unions are added “at the top level” only; so the syntax is

\[E ::= E_1 \cup \ldots \cup E_k \]

where \(E_i \) is a TRC-RD expression

Note that unions can appear “inside” a general RA expression, as in

\[\sigma_p(E_1 - (E_2 \cup E_3)) \]

while they can appear only at the top level of a TRCU-RD expression. This is the only reason the result is not immediate.

Instead of requiring range declarations, we can define a TRC language with implicit ranges, TRC-IR. Syntactically, a TRC-IR expression is identical to a TRC expression. The difference lies in the semantics. The result of a TRC-IR expression \(E \) is

\[[E]_{(D_r \cup C(E))}(r) \]

where \(C(E) \) is the set of constants that are mentioned in \(E \), and the subscript \((D_r \cup C(E)) \) specifies the data domain over which the values of quantified variables may range. (This subscript convention is used in the notes in the discussion of Domain-Independence.) Informally, we compute the result of a TRC-IR expression \(E \) applied to instance \(r \), by restricting ourselves to data values that are explicitly mentioned in \(E \) or occur in \(r \).

It is (I hope) self-evident that TRC-IR is domain-independent, and that its semantics coincides with TRC if the data domain is \((D_r \cup C(E)) \). Thus, TRC-IR is no more expressive than TRC-DI (which is equivalent to RA, DRC-RD, and TRCU-RD).

Problem 3c: Show that TRC-IR is equivalent to RA, by showing that TRC-IR can simulate TRCU-RD, which is equivalent to RA.

\[\square \]

4 Quantifying Over Relations

We have given calculi with variables that range over scalars and tuples. You might find it natural to move one step “up” and allow relation-valued variables.
Here we explore this a bit, describing languages RRC and RRC-IR by analogy with what we’ve done above.

The syntax for RRC is a simple extension of that for TRC: we introduce an infinite set of typed *relation-valued variables* of the form $u(X)$, completely analogous to (and disjoint from) the tuple-valued variables $x(X)$. We do not allow relation-valued variables to appear at “top level”, so the syntax remains

$$E := \{ A_1 : x_1[B_1] \ldots A_m : x_m[B_m] | y_1(Y_1) \ldots y_n(Y_n) | F \}$$

However, we add two clauses to the syntax of formulas F. A formula can test whether a tuple-valued variable is in a relation-valued variable:

$$F := (x(X) \in u(X))$$

and a formula can quantify over relations with a given set of attributes:

$$F := (\exists u(X))F_1$$

There are two versions of the semantics. With unbounded quantification (RRC) variables (both tuple-valued and relation-valued) range over the entire data domain. With bounded quantification (RRC-IR) variables (of both kinds) range over $(D_r \cup C(E))$.

As you might expect, quantifying over relations adds considerable power.

Problem 4a: Show how to express transitive closure in RRC-IR. That is, given the database schema $R = (R_1(AB))$, construct an RRC-IR expression E such that for any instance $r = (r_1)$,

$$[E]_{(D_r \cup C(E))}(r) = (r_1)^+$$

that is, the result is the transitive closure of r_1. Explain your answer.

Unfortunately quantifying over relations adds *too much* power to be practical – the cost of evaluating a RRC or RRC-IR query expression is too high.

Problem 4b: (Optional) Prove zero to two of the following:

Show that given a RRC expression E, a database instance r, and a tuple value t, it is undecidable whether t is in $[E](r)$.

5
Show that given a RRC-IR expression E, a database instance r, and a tuple value t, it is NP-complete to determine whether t is in $[E](r)$.

The proofs I have in mind are nearly identical.

\square