
Representing and Accessing [Textual] Digital Information (COMS/INFO 630), Spring 2006
Lecture 8: Completion of alternate LM formulation; introduction to relevance feedback

2/21/06
Lecturer: Lillian Lee

Scribes: Nicholas Hamatake (nh39), Min Park (mp257)

1 Introduction

1.1 Overview

Last lecture, we started examining the language modeling (LM) approach to the probabilistic retrieval
model, following previous lectures regarding the Classic approach. The inference scenario for LM retrieval
was considered, and a specific example was introduced: multinomial “topic” models with corpus-dependent Dirichlet
priors.
 Today’s lecture concludes the discussion of this special case of LM retrieval, including a discussion of
an apparent ‘problem’ in its scoring function, and possible ways to fix it. The suggested ways of fixing the
problem were not very satisfactory. This led to a re-examination of this ‘problematic’ scoring function via
some algebraic manipulations that supported the claim that there was no problem to begin with!
 Following the conclusion of this model, an important note on vocabulary was made to emphasize
that these multinomial models are not equivalent to unigram models. They are similar in some aspects and
comparisons are made as well as a statement of their mathematical relationship. Finally, the unigram model,
its ‘flaw’, and solution for it are presented.
 The lecture concludes with a new scenario for a re-interpretation of the LM model by which
relevance can be explicitly described (previously relevance had been essentially simply a formal hidden
variable in our models).

1.2 Review of Probabilistic Retrieval models

1.2.1 Classic Probabilistic Retrieval: scoring by P(R=y|D=d)

Scoring functions for classic probabilistic retrieval were derived from P(R=y|D=d) where R and D
were used to denote random variables for relevance and document, respectively. To give P(R=y|D=d) a
probability distribution of some sort, we assumed that given a document, its relevance status may vary due to
document representation. This allowed us to bin documents into attribute classes. For instance, two
documents containing two words, “white house” and “house white” could be represented by the same
attribute vector, but their relevance status is likely to be different. Finally, making the assumption that
attribute variables are binary, the Robertson-Spärck-Jones (RSJ) model (’76) was derived.

For an estimate of the RSJ scoring function that would be a ‘derivation of inverse document frequency’,
Croft and Harper (’79), imposed an assumption that non-query term attributes have the same distribution
over relevant documents as over all documents, which led to an estimate containing a term equivalent to idf in
the VSM scoring function. What this estimate was missing with respect to the VSM scoring function was term
frequency and length normalization. That is, with enough assumptions, the derivations from first principles led to
the derivation of an idf.

A different approach—the ‘isolated poisson’ model—applied to the RSJ model, would produce tf
and idf in the scoring function together. This approach aimed to model the number of times a particular term
occurs in a document of fixed length. With the fixed length assumption, the poisson becomes relevant as the
number of times a term occurs among a fixed number of words in a document can be viewed to have a
binomial distribution; thus, a poisson approximation of the binomial distribution was used to take terms in

the RSJ model, P(Aj = aj(d)|R=y) and P(Aj=aj(d)) to be probabilities from the poisson distribution with

parameters ρ and γ respectively where Aj represents the random variable for attribute vector aj(d) (note: ρ >
γ). With poisson probabilities substituted into the RSJ model, taking the log of it yields a function containing
the equivalent of tf and idf, but no length normalization.

Finally, another approach—the ‘mixture of poissons’ model—which introduces the notion of topics
through a set of m binary random variables T1, …Tj, …Tm such that for any j, if d if about v(j)’s topic, Tj = y,
and n otherwise. This approach led to a “very big” scoring function with four unknowns once the new
random variables were incorporated into the RSJ model. Based on some characteristics of the function, a
much more simplified version of the function with similar properties was taken to get a sort of ad hoc
weighting scheme (BM25/Okapi weighting scheme) that had tf, idf, and obscurely appended length
normalization (but still different from VSM).

1.2.2 Language Modeling Approach to the Probabilistic Retrieval, score by P(R=y|D=d, Q=q)

 If there was dissatisfaction from the derivations in the classic approach, it could be addressed by
rethinking the entire approach. This gave rise to the language modeling approach to the probabilistic retrieval
model. Lafferty and Zhai (’03) introduced a random variable for the query into the scoring function. This led
to the derivation of the scoring function P(Q=q|R=y, D=d)P(R=y|D=d) where P(Q=q|R=y, D=d) was taken
as the ranking function, and P(R=y|D=d) as a prior probability of relevance. A feasible interpretation of
P(Q=q|R=y, D=q) was that given a document that satisfies the user’s information need, query q is issued. In
the inference scenario, if t(d) denotes the “topic” of d, then Pt(d)(q) was used to denote the probability of
generating the query q if t(d) satisfies the user’s information need, whereas in the probabilistic retrieval case,
we could think of Pt(q)(d)/P(D=d) as incorporating the probability of generating document d under the query
model t(q). In this LM approach to retrieval, we noticed that there is no hidden variable R for relevance. A
multinomial model with corpus-dependent Dirichlet priors was introduced as a special case of this inference
scenario.

2 Multinomial Topic Models with
Corpus-Dependent Dirichlet Priors

2.1 Review and Notation

As a special case of the LM probabilistic retrieval model, the concept of multinomial topic models
with corpus-dependent Dirichlet priors was introduced in the previous lecture which ended on an

inquisitive note as to how to obtain estimates of θ
�

.
The overall idea of this multinomial model is to score a document by Pd(q), the probability

that a document model induces the query q. We used a multinomial model for generating strings
(queries, documents, or an entire corpus). A string of length l is produced by l independent rolls of a
weighted m-sided die (where m is the size of our vocabulary). This m-sided die is represented by a

parameter vector θ θ θ=
�

1(), ..., m such that for all , []∈ 1,j m ,

{ }

θ

θ
=

=

=
�

()

()

1

probability of v appearing

and

probability of v appearing for a model based on document ()

j

j

mj

j
dd

 For document d, Pt(d) is the language model represented by θ
�

()d .

 Given estimates for the θ
�

parameters, we can express θ
�

()
()

d
P q as:

 θ
=�

()
() (,) ()

d
P q f q d K q (2.1.1)

 Where, f(q,d) denotes the probability of seeing the ‘sorted’ version of q.
 A sorted query looks like:

(1) (1) (2) (2) () ()...m mv v v v v v

 K(q) denotes the number of possible permutations of the sorted version of q;

it is the multinomial coefficient of our distribution; since each of these
coefficients are constants, it will not affect the score in ranking.

 Given our (now standard) independence assumption, we were able to express f(q,d) as

θ = ∏

()
(,) ()

jt

j

j

f q
f q d d

 (2.1.2)

2.2 The Anti-idf “Problem”

The estimator proposed for each θ j was

µ
θ

µ

+
=

+

() ()/| |ˆ ()
| |

j j

j

tf d tf c c
d

d
 (2.2.1)

which ‘made sense’ intuitively, and also provided a tf and a norm (|d|). The ()/| |jtf c c was added

as a smoothing term. This prevents documents not containing all query terms from automatically
being given a score of zero. However, we were concerned about having something that looked like
an idf in the numerator of the scoring function. Recall that the scoring function produced by using
the estimates in (2.2.1) is:

θ

µ

µ

+
= =

+
∏�

()

()
()

(
(

) (,)
| |

)/| |rank
j j

d
j

jtf q
ttf f c cd

P q f q d
d

 (2.2.2)

We called the smoothing term an “anti-idf” since it was precisely the reciprocal of what we wanted to
see. Using this scoring function, one would think that terms that occur more frequently in the
corpus would be given more weight in scoring, which seemed like somewhat of a problem. Possible
solutions to this problem that were briefly discussed were as follows:

• Remove the smoothing term (set µ=0)
Problem with this suggestion: Documents missing any of the query terms are given
a score of zero, the same as if they were missing all query terms.

• Smooth by a uniform prior
While this solution may be mathematically sound, the model would become less
sophisticated with respect to language, which seems undesirable.

1() timestf q

() timesmtf q

• Manually replace the ()/| |jtf c c with its reciprocal, thus forcing an idf to appear
This solution seems far too ad hoc.

Alternatively, we could move away from the generative model and start over completely. The point:
none of these suggestions really seem to satisfactory address the anti-idf issue.

2.3 Was there a problem to begin with?

We now claim that the model really doesn't have the anti-idf problem to begin with. We can show
this with some algebraic manipulations which are similar in spirit to the ones we saw in the derivation
of the Robertson-Spärck-Jones model. In the end, we will have an expression with tfj(c) in the
denominator instead of the numerator.

First, we simplify the expression by defining norm(d) to be (|d|+µ)|q| and moving the denominator
outside of the product. We then separate the product into two smaller products, one over terms
which appear in the document and one over terms which do not. Finally, we multiply by both the idf
term and its reciprocal, but only for terms which appear in the document.

Just as in the RSJ model, we get four products. If we denote these as (I) through (IV), the document
tf's in (II) are all zero, so (II) and (III) can be combined to form a single term that is constant with
respect to d, allowing us to drop it from the scoring function. (I) and (IV) can then be
combined and simplified to yield our final scoring function:

θ

µ µ

µ
>

= = +

= = ×

 × +

×

∏

�

�

| |

()

: () 0

()

Define () (, ,) (| |)

1
() (,) ...

()

 ()/| | ()

j

q

rank

d

jj

j tf d

jtf q

norm d norm d q d

P q f q d
norm d

tf d tf c c

tf µ

µ

µ

=

>

>

 +

×

×

∏

∏

∏

: () 0

: () 0

: () 0

()

()

()

()

()

| |

| |

()

()/| |
j

j

j

j

j tf d

j

j tf d

j tf d j

j

j

j

j

tf q

tf q

tf q

d

tf

tf c

c

c

c

c

tf c

µ>

+

∏

()

: () 0

()1
 = 1

() ()

| |
j

j

tf q
rank

j

j f d j

tf d

norm c

c

d tf

Note that this scoring function contains length normalization, term frequency, and an inverse document
frequency—all three consensus points for the term weighting question (See lecture 2 and 3). Also note
that this derivation did not involve any additional independence assumptions or probability estimates;
it was accomplished purely algebraically.

(I)

(II)

(III)

(IV)

3 Multnomial vs. Unigram Models

In the special case of the LM model above, it is important to note that it is different from a unigram model,
although there are similarities. In practice, if a unigram model is used for language modeling, one may
encounter ‘check-sum’ issues, such as seemingly appropriate probabilities that actually sum to more than 1.

3.1 The Unigram Model

Assume that the parameters are θ θ1 , ..., m (probabilities) as before, such that
θ =∑ 1j

j
. Assume

independence of term occurrences. Then,

θ=()" ()"j

u jP v
=∏
()

"()"
jtfq

uj

j

Pq
(3.1.1)

Since we are assuming independence of term occurrences,

 θ=()" ()"j

u jP v for all j,

 and θ= =∑ ∑()() 1j

u j

j j

P v for all j

 Then what is
(1) (2)" ()"uP v v (as an example)? We might expect it to be equal to θ θ1 2 since term

occurrences are independent; however, this is a contradiction to
θ =∑ 1j

j
-- all of the available probability

has been “used up” by the one-term documents. Thus, =(1) (2)" ()" 0uP v v .

 The multinomial model differs in its inclusion of a length-dependent term, although it is equivalent to
the unigram model in terms of ranking (since the length-dependent term depends only on the query and not
on the document).

3.2 How to fix 'check-sum' issues in the unigram model

We may still want to use the unigram model's estimates for θ θ1 , ..., m for non-ranking purposes.
Unlike the multinomial model, there is no computation-heavy coefficient in the unigram model, making it
easier to work with.

We can fix the 'check-sum' issues by observing the following: At some point during document
generation, a decision must be made to stop generating the document. We can introduce s into our model as

the probability that this decision is made. This will give us a 2-state HMM model, and
(1) (2)" ()"uP v v would

now be given by:

 θ θ= − −(1) (2)

1 2() (1) (1)HP v v s s s

Note that 1-s is simply the probability of not stopping, the complement of the event of stopping.

It was asserted—but not formally proven—that this gives a proper probability distribution.

4 An even more generative approach

We have produced a VSM-style model as a special case of the language model scenario. But, this derivation
finessed selection versus generation, and we may want a model that is a bit more generative.

To this end, we consider an entirely new scenario in which corpus contents are described by a set of “topic”
models of language. Documents are generated by choosing and using a single topic model TD. Queries are
similarly generated by selecting a model from a set of language models which describe users' information
needs. If we call the query topic model TQ, we can now express relevance as TD = TQ. Finally, we are
defining relevance explicitly in terms of topic match, rather than treating it as a hidden random variable. We
will explore this model more next time...

