Representing and Accessing Digital Information

30. August, 2004
Mondays and Wednesdays, 2:55-4:10
Rhodes 484

Outline:
- Instructor: Thorsten Joachims
- Overview of material covered
- Syllabus
- Reference Material
- Prerequisites
- Grading

Instructor
Thorsten Joachims
• 4153 Upson Hall
• Email: tj@cs.cornell.edu
• Office hours: Monday 16:15-17:00, Wednesday 16:15-17:00

Broad Research Interests:
- machine learning and statistical learning theory
- information retrieval

Examples:
- text classification
- information systems that learn by observing users
- similarity metrics for natural language
- predicting complex objects (e.g. trees, alignments)

Information Access Tasks Covered in CS630
- documents/texts in natural languages and semi-structured data
 - unknown and not predefined structure
 - could be in multiple languages
 - no or little operational semantics
- well defined tasks (classification, topic tracking, etc.)
- typically large quantities of data, for example
 - continuously analyzing the articles in all US newspapers
 - extracting information from the WWW
- methods perform the task without fully understanding the text
 - not full natural language understanding
 - use statistical techniques and machine learning
- user modelling
 - patterns in user behavior / homogeneous groups

Layers of Information
Content
- text in document
- images
Meta-data
- authorship
- creation time and date
- hyperlinks
Usage
- number of visits (over time)
- keywords used in search for document
- documents visited by same user in same session

Text Classification: Yahoo!

Text Clustering: Google News
Overview of the Syllabus (I)

- **Information Retrieval Basics**: vector space model, inverted indexes, statistical properties of text, evaluation in information retrieval (4 lectures)
- **WWW Structure**: co-citation analysis, Pagerank (1-2 lectures)
- **Text Classification**: support vector machines, naive bayes, k-nearest neighbor, feature selection (4 lectures)
- **Text Clustering**: k-means clustering, hierarchical agglomerative clustering (2 lectures)
- **Latent Semantic Analysis**: (1 lecture)

Overview of the Syllabus (II)

- **Semi-Structured Data and Semantic Web**: schemas, XML databases and queries, XML information retrieval (1-2 lectures)
- **Information Extraction**: system architecture, hidden markov models, part-of-speech tagging, named entity detection, learning extraction patterns (3-4 lectures)
- **Usage Data**: clickthrough data, navigation paths, personalized retrieval functions (2 lectures)
- **Recommender Systems**: product recommendations, item-to-item similarity, user groups (2 lectures)
- **Document Summarization**: single- and multi-document summarization, summarization evaluation (1 lecture)

Support System

Handouts:
- readings
- slides
- homework assignments

Course WWW page:
- syllabus
- homework assignments / slides / research papers

Office Hours:
- Thorsten Joachims: 4153 Upson Hall, tj@cs.cornell.edu, Mondays 16:15-17:00, Wednesdays 16:15-17:00

Further Reference Material

Prerequisites

Any of the following:
- CS472 Artificial Intelligence
- CS478 Machine Learning
- CS578 Emp. Methods in Machine Learning
- CS678 Advanced Topics in Machine Learning
- CS674 Natural Language Processing
- equivalent of any of the above
- permission from the instructor
Assignments

Homework
- ~3 homework assignments
- some programming, some conceptual
- some group work (I will make clear when group work is allowed)

Reading
- ~6 critiques of selected readings and research papers
- max. 1 page
- individual, not group work

All assignments due at start of class. Assignments turned in late will be penalized one full grade (e.g. A-->B) for every 24 hours of delay. Copying / cheating / cooperating / helping may result in automatic failure of the course => academic integrity policy on WWW page.

Grading

Grades will be determined as follows:
- 25%: mid-term exam
- 25%: final project
- 30%: homework assignments
- 10%: critiques of selected readings and research papers
- 10%: class participation

Roughly: A=90-100; B=80-90; C=70-80; D=60-70; F= below 60