Recommender Systems

- Task definition
- Item-to-Item Similarity
- User-to-User Similarity
- Recommendation
 - Content-based methods
 - Collaborative nearest neighbor methods
 - Collaborative model-based methods

Motivation

- Matchmaking between users and items
 - Filtering
 - Exploration
 - Marketing
 - etc.

Example: Amazon

Data

- Explicit feedback
 - Ratings
 - Reviews
 - Auctions
 - etc.
- Implicit feedback
 - Page visits
 - Purchase data
 - Browsing paths
 - etc.

Types of Recommendations

- Item-to-Item associations
 - More pages like this
 - “Users who bought this book also bought X”
- User-to-User associations
 - Which other user has similar interests?
- User-to-Item associations
 - Rating history describes user
 - Items are described by attributes
 - Items are described by ratings of other users
Recommender Systems

- **Task definition**
- **Item-to-Item Similarity**
- **User-to-User Similarity**
- **Recommendation**
 - Content-based methods
 - Collaborative nearest neighbor methods
 - Collaborative model-based methods

Item-to-Item Recommendation

- **Content-based approach**
 - Item is described by a set of attributes
 - Movies: e.g. director, genre, year, actors
 - Documents: bag-of-word
 - Similarity metric defines relationship between items
 - e.g. cosine similarity
 - Examples
 - “related pages” in search engine
 - Google News

Item-to-Item Recommendation

Content-based approach
- Item is described by a set of attributes
 - Movies: e.g. director, genre, year, actors
 - Documents: bag-of-word
- Similarity metric defines relationship between items
 - e.g. cosine similarity
- Examples
 - “related pages” in search engine
 - Google News

Collaborative filtering
- Item is described by user interactions
 - Matrix V of n (number of users) rows and m (number of items) columns
 - Elements of matrix V is user feedback
- Examples:
 - Rating given to item by each user
 - Users who viewed this item
- Similarity metric between items
 - E.g. cosine

User-to-User Similarity

- **User is described by his/her ratings**
 - Matrix V of n (number of users) rows and m (number of items) columns. Elements of matrix V is user feedback.
- **Normalization**
 - Mean rating of user \(i \): \(\bar{r}_i = \frac{1}{\# \text{of ratings}} \sum_j r_{ij} \)
- **Similarity measure between users**
 - Cosine: \(s_{cos}(i, j) = \frac{\sum_{k=1}^{m} r_{ik}r_{jk}}{\sqrt{\sum_{k=1}^{m} r_{ik}^2 \sum_{k=1}^{m} r_{jk}^2}} \)
 - Correlation: \(s_{corr}(i, j) = \frac{\sum_{k=1}^{m} (r_{ik} - \bar{r}_i)(r_{jk} - \bar{r}_j)}{\sqrt{\sum_{k=1}^{m} (r_{ik} - \bar{r}_i)^2 \sum_{k=1}^{m} (r_{jk} - \bar{r}_j)^2}} \)
- **Problems**
 - Data sparseness
 - Unknown vs. unseen
Content-Based Recommendation

- Use the ratings as feedback
 - Binary
 - Ordinal
- Represent items using a set of features
 - Movies: e.g. director, genre, year, actors
 - Documents: bag-of-word
- Learn function that predicts the rating for un-rated items
 - Learn one function per user
 - Can use any machine learning method
- Strengths and Weaknesses?

Collaborative Nearest-Neighbor Methods

- Idea: Recommend items that similar users like
- User is described by his/her ratings
 - Matrix V of n (number of users) rows and m (number of items) columns. Elements of matrix V is user feedback.
- Normalization
 - Mean rating of user u $\mu_u = \frac{1}{t_u} \sum_{i} r_{ui}$ t_u = # of ratings
- Similarity measure between users $\cosine(u, v) = \frac{\sum_{i} r_{ui} \cdot r_{vi}}{\sqrt{\sum_{i} r_{ui}^2 \cdot \sum_{i} r_{vi}^2}}$ (or Correlation)
- Prediction via linear combination
 $$\hat{v}_{ui} = \mu_u + \frac{1}{\sum_{i} |\text{sim}(a, b)|} \sum_{i} \text{sim}(a, b)(r_{u_i} - \mu_u)$$

Collaborative Model-Based Methods

- Idea
 - Learn a model offline
 - Use model to make predictions online
- Approach: Model joint density of user ratings
 - Cluster users
 - Approximate joint density with mixture model
- Approach: Learn conditional model for each item
 - Learn prediction rules
 - One rule for each item

Joint Density Modeling

- Idea: Estimate distribution of ratings via mixture model
 $$P(x_1, ..., x_n) = \sum_{k=1}^{K} P(x_1, ..., x_n | h_k) \cdot P(h_k)$$
- Assumptions:
 - K disjoint user-interest classes
 - Each user is in exactly one interest class
 - Users within one class behave according to simple model, e.g. $P(x_1, ..., x_n | h_k) = \prod_{i=1}^{n} P(x_i | h_k)$
- Prediction
 - Classify user via mode $\hat{h} = \arg \max_{h} P(x_1, ..., x_n | h) \cdot P(h)$
 - Bayesian classification
- Extensions
 - User can be in multiple classes (Hoffmann & Puriza, 1999)

Conditional Models

- Idea: Learn a prediction rule for each item
 $$\hat{y}_a = f(x_1, ..., x_n)$$
- Learning Problem
 - Classification: Predict rating class [Heckerman et al., 2000]
 - Regression: Predict rating score
 - Ordinal Regression: Predict ranking of items [Cohen et al., 1999]
- Challenges:
 - Handling missing ratings
 - Computational expense for learning m models
 - No ratings for new products

Cold-Start Problem

- Problem: new users have too few ratings for effective recommendation
- Idea: Combine ratings with other user attributes
 - Demographic attributes
 - Attributes from other domains
 - Questionnaires
- Challenges:
 - Designing combined models
 - Trading-off user attributes with rating attributes
Evaluation

• Batch Evaluation
 – Use historical data
 – Split into training and test part on a per-user basis
 – k ratings to describe user, remaining ratings for testing
 – Problems?

• Online Evaluation
 – Install recommender system in operational system
 – Controlled experiment with control group
 • Does the recommender system increase sales?
 • Does the recommender system make users return more often?
 • etc.