CS630 Representing and Accessing Digital Information

Recommender Systems

Thorsten Joachims Cornell University

Recommender Systems

- · Task definition
- · Item-to-Item Similarity
- · User-to-User Similarity
- · Recommendation
 - Content-based methods
 - Collaborative nearest neighbor methods
 - Collaborative model-based methods

Motivation

- · Matchmaking between users and items
 - Filtering
 - Exploration
 - Marketing
 - etc.

Data

- · Explicit feedback
 - Ratings
 - Reviews
 - Auctions
 - Auctio
- · Implicit feedback
 - Page visits
 - Purchase data
 - Browsing paths
 - etc

Types of Recommendations

- · Item-to-Item associations
 - More pages like this
 - "Users who bought this book also bought X"
- · User-to-User associations
 - Which other user has similar interests?
- User-to-Item associations
 - Rating history describes user
 - Items are described by attributes
 - Items are described by ratings of other users

Recommender Systems

- · Task definition
- · Item-to-Item Similarity
- · User-to-User Similarity
- · Recommendation
 - Content-based methods
 - Collaborative nearest neighbor methods
 - Collaborative model-based methods

Item-to-Item Recommendation

· Content-based approach

- Item is described by a set of attributes
 - · Movies: e.g director, genre, year, actors
 - · Documents: bag-of-word
- Similarity metric defines relationship between items
- · e.g. cosine similarity
- Examples
 - · "related pages" in search engine
 - · Google News

Item-to-Item Recommendation

· Collaborative filtering

- Item is described by user interactions
 - · Matrix V of n (number of users) rows and m (number of items) columns
 - · Elements of matrix V is user feedback
- Examples:
 - · Rating given to item by each user
 - · Users who viewed this item
- Similarity metric between items
 - · E.g. cosine

Recommender Systems

- · Task definition
- · Item-to-Item Similarity
- · User-to-User Similarity
- · Recommendation
 - Content-based methods
 - Collaborative nearest neighbor methods
 - Collaborative model-based methods

User-to-User Similarity

· User is described by his/her ratings

Matrix V of n (number of users) rows and m (number of items) columns. Elements of matrix V is user feedback.

- Mean rating of user a
$$\bar{v}_{a} = \frac{1}{l_{i}} \sum_{i} v_{as}$$
 $l_{i} = \#$ of ratings

• Similarity measure between users
$$- \text{ Cosine } \qquad sim(a,b) = \sum_i \frac{v_{ai}}{\sqrt{\sum_k v_{ak}^2}} \frac{v_{bi}}{\sqrt{\sum_k v_{bk}^2}}$$

- Correlation
$$sim(a,b) = \sum_i \frac{(v_{ai} - \overline{v}_a)(v_{bi} - \overline{v}_b)}{\sqrt{\sum_k (v_{ak} - \overline{v}_a)^2 \sum_k (v_{ak} - \overline{v}_a)^2}}$$

- data sparseness
- Unknown vs. unseen

Recommender Systems

- · Task definition
- · Item-to-Item Similarity
- · User-to-User Similarity
- · Recommendation
 - Content-based methods
 - Collaborative nearest neighbor methods
 - Collaborative model-based methods

Content-Based Recommendation

- · Use the ratings as feedback
 - Binary
 - Ordinal
- · Represent items using a set of features
 - Movies: e.g director, genre, year, actors
 - Documents: bag-of-word
- · Learn function that predicts the rating for un-rated
 - Learn one function per user
 - Can use any machine learning method
- · Strengths and Weaknesses?

Collaborative Nearest-Neighbor Methods

- · Idea: Recommend items that similar users like
- · User is described by his/her ratings
 - Matrix V of n (number of users) rows and m (number of items) colums. Elements of matrix V is user feedback.
- Normalization
- Mean rating of user a $\overline{v}_{a} = \frac{1}{l_{i}} \sum_{v_{ak}} v_{ak}$ $l_{i} = \#$ of ratings
 Similarity measure between users
 Cosine $sim(a,b) = \sum_{i} \frac{v_{ak}}{\sqrt{\sum_{k} v_{ak}^{2}} \sqrt{\sum_{k} v_{bk}^{2}}}$ (or Correlation)
- · Prediction via linear combination

$$\hat{v}_{aj} = \bar{v}_a + \frac{1}{\sum_b |sim(a,b)|} \sum_i sim(a,b) (v_{bj} - \bar{v}_b)$$

Collaborative Model-Based Methods

- Idea
 - Learn a model offline
 - Use model to make predictions online
- · Approach: Model joint density of user ratings
 - Cluster users
 - Approximate joint density with mixture model
- · Approach: Learn conditional model for each item
 - Learn prediction rules
 - One rule for each item

Joint Density Modeling

· Idea: Estimate distribution of ratings via mixture

$$P(v_1,...,v_m) = \sum_{k=1}^{K} P(v_1,...,v_m|u=k)P(u=k)$$

- · Assumptions:
 - K disjoint user-interest classes
 - Each user is in exactly one interest class
 - Users within one class behave according to simple model,

$$P(v_1,...,v_m|u=k) = \prod_{j=1}^m P(v_j|u=k)$$

- - Classify user via mode $u = \arg \prod_{k=1}^{K} x P(\hat{v}_1, ..., \hat{v}_l | u = k) P(u = k)$
 - Bayesian classification
- Extensions
 - User can be in multiple classes (Hofmann & Puzicha, 1999)

Conditional Models

· Idea: Learn a prediction rule for each item

$$\bar{v}_{aj} = h(v_{a1},...,v_{am})$$

- · Learning Problem
 - Classification: Predict rating class [Heckerman et al., 2000]
 - Regression: Predict rating score
 - Ordinal Regression: Predict ranking of items [Cohen et al., 19991
- · Challenges:
 - Handling missing ratings
 - Computational expense for learning m models
 - No ratings for new products

Cold-Start Problem

- · Problem: new users have too few ratings for effective recommendation
- · Idea: Combine ratings with other user attributes
 - Demographic attributes
 - Attributes from other domains
 - Ouestionnaires
- · Challenges:
 - Designing combined models
 - Trading-off user attributes with rating attributes

Evaluation

· Batch Evaluation

- Use historical data
- Split into training and test part on a per-user basis
- k ratings to describe user, remaining ratings for testing
- Problems?

• Online Evaluation

- Install recommender system in operational system
- Controlled experiment with control group
 - Does the recommender system increase sales?
 - Does the recommender system make users return more often?
 - etc.