CS630 Representing and Accessing Digital Information

Information Retrieval: Retrieval Models

Thorsten Joachims
Cornell University

Based on slides from Jamie Callan and Claire Cardie

Information Retrieval

• Basics
• Data Structures and Access
• Indexing and Preprocessing
• Retrieval Models

Basic IR Processes

What is a Retrieval Model?

• A model is an abstract representation of a process
 – Used to study properties, draw conclusions, make predictions
 – Quality of the conclusions depends on how closely the model represents reality
• A retrieval model describes the human and computational processes involved in ad-hoc retrieval
 – Example: models human information seeking behavior
 – Example: models how documents are ranked computationally
 – Components: users, information needs, queries, documents, relevance assessments, …
 – Retrieval models have notion of relevance, explicitly or implicitly

Major Retrieval Models

• Boolean
• Vector space
• Citation analysis models
• Usage analysis models (later in semester)
• Probabilistic models (partially covered in text classification)

Types of Retrieval Models:

• Exact match
 – Query specifies precise retrieval criteria
 – Every document either matches or fails to match query
 – Result is a set of documents
 • Usually in no particular order w.r.t. relevance
 • Often in reverse-chronological order
• Best match
 – Query describes retrieval criteria for desired documents
 – Every document matches the query to some degree
 – Result is a ranked list of documents, “best” first
Overview

- **Boolean**
 - **Vector space**
 - Basic vector space
 - Extended boolean model
 - Latent semantic indexing (LSI)
 - **Citation analysis models**
 - Hubs & authorities
 - PageRank
 - **Usage analysis models**
 - Direct Hit
 - Ranking SVM
 - **Probabilistic models**
 - Basic probabilistic model
 - Bayesian inference networks
 - Language models

- **Exact Match vs. Best Match Retrieval**
 - Best-match models are usually more accurate/effective
 - Good documents appear at the top of the rankings
 - Good documents often don’t exactly match the query
 - Query may be too strict
 - Document didn’t match user expectations
 - Exact match still prevalent in some markets
 - Installed base
 - Efficient
 - Sufficient for some tasks
 - Web “advanced search”

Unranked Boolean Retrieval Model

- Most common Exact Match model
- **Model**
 - Retrieve documents iff they satisfy a Boolean expression
 - Query specifies precise relevance criteria
 - Documents returned in no particular order
- **Operators**
 - Logical operators: AND, OR, AND-NOT (BUT)
 - Distance operators: near, sentence, paragraph, ...
 - String matching operators: wildcard
 - Field operators: date, author, title
- **Unranked Boolean model is not the same as Boolean queries**

Example

Boolean Query

```
(((professional OR elite) NEAR/1 competitive NEAR/1 eating) OR (competit* NEAR/1 eat*)) AND (FIELD date 7/4/2002) AND-NOT (weight NEAR/1 loss ))
```

- Studies show that people are not good at creating Boolean queries
 - People overestimate the quality of the queries they create
 - Queries are too strict: few relevant documents found
 - Queries are too loose: too many documents found (but few relevant)

Implementation Details

- Query subtrees can be evaluated in parallel
 - Use multiple processes
 - Reduce I/O wait time

- Query optimization is very important
 - Order query by term frequency
 - “fail early” for intersection operators such as AND, proximity

```
Computer (6%) AND Diagnosis (2%) AND Medicine (5%) AND Disease (2%)
```

Boolean Query Optimization

- Goal: lower average cost of evaluating query

```
AND (7%)
  COMPUTER (6%)
  OR (7%)
    MEDICINE (8%) DISEASE (8%)
    DIAGNOSIS (6%)
  computer (6%) AND (Diagnosis (6%) OR Medicine (8%) OR Disease (8%))
```
Unranked Boolean: WESTLAW

- Large commercial system
- Serves legal and professional markets
 - Legal: court cases, statutes, regulations, …
 - Public records
 - News: newspapers, magazines, journals, …
 - Financial: stock quotes, SEC materials, financial analyses
- Total collection size: 5-7 Terabytes
- 700,000 users
- In operation since 1974
- Best-match and free text queries added in 1992

Unranked Boolean: WESTLAW

- Boolean operators
- Proximity operators
 - Phrases: “Cornell University”
 - Word proximity: language /3 technology
 - Same sentence (/s) or paragraph (/p): Kobayashi /s “hot dog”
- Restrictions: Date (After 1990 & Before 2002)
- Query expansion:
 - Wildcard: K*ashi
 - Automatic expansion of plurals and possessives
- Document structure (fields): Title
- Citations: Cites (Salton) & Date (After 1998)

Unranked Boolean: WESTLAW

- Queries are typically developed incrementally
 - Implicit relevance feedback
 - V1: machine AND learning
 - V2: (machine AND learning) OR (neural AND networks) OR (decision AND tree)
 - V3: (machine AND learning) OR (neural AND networks) OR (decision AND tree) AND (C4.5 OR Ripper OR EM)
- Queries are complex
 - Proximity operators used often
 - NOT is rare
- Queries are long (9-10 words, on average)

Unranked Boolean: Summary

- Advantages
 - Very efficient
 - Predictable, easy to explain
 - Structured queries
 - Works well when searcher knows exactly what is wanted
- Disadvantages
 - Difficult to create good Boolean queries
 - Difficulty increases with size of collection
 - Precision and recall usually have strong inverse correlation
 - Predictability of results causes people to overestimate recall
 - Documents that are “close” are not retrieved

Term Weights: A Brief Introduction

- The words of a text are not equally indicative of its meaning
 - “Most scientists think that butterflies use the position of the sun in the sky as a kind of compass that allows them to determine which way is north. Scientists think that butterflies may use other cues, such as the earth’s magnetic field, but we have a lot to learn about monarchs’ sense of direction.”
- Important: butterflies, monarchs, scientists, direction, compass
- Unimportant: most, think, kind, sky, determine, cues, learn
- Term weights reflect the (estimated) importance of each term

Term Weights: A Brief Introduction

- There are many variations on how term weights are calculated
 - The standard approach for many IR systems is tf.idf weights
 - Should include the term frequency
 - $tf_{i,j}$: number of times term i occurs in document j
 - But terms that appear in many documents in the collection are not very useful for distinguishing a relevant document from a non-relevant one
 - $idf_{i,j}$: inverse document frequency
 - Inverse of the frequency of a term i among the documents in the collection
 - $tf_{i,j} \times idf_{i,j}$
Ranked Boolean Retrieval Model

- Ranked Boolean is another common Exact Match retrieval model
- **Model**
 - Retrieve documents iff they satisfy a Boolean expression
 - Query specifies precise relevance criteria
 - Documents returned ranked by weight of query terms
- **Operators**
 - Logical operators: AND, OR, AND-NOT
 - Distance operators: proximity
 - String matching operators: wildcard
 - Field operators: date, author, title

Ranked Boolean Retrieval

- How document scores are calculated
 - Term weight, t_{ij}: function of frequency of query term i in document j
 - AND weight: minimum of argument weights
 - OR weight: maximum of argument weights
 - AND weight: sum of argument weights
 - Minimum of argument weights
 - Maximum of argument weights
 - Sum of argument weights

Ranked Boolean Retrieval: Advantages

- All of the advantages of the unranked Boolean model
 - Very efficient, predictable, easy to explain, structured queries, works well when searchers know exactly what is wanted
 - Result set is ordered by how “redundantly” a document satisfies a query
 - Usually enables a person to find relevant documents more quickly
 - Variety of term weighting methods can be used
 - t^f
 - t^{idf}
 - …

Ranked Boolean Retrieval: Disadvantages

- It’s still an Exact Match model
 - Good Boolean queries are hard to come by
 - Difficulty increases with size of collection
- Precision and recall usually have strong inverse correlation
- Predictability of results causes people to overestimate recall
 - The returned documents match expectations…
 - …so it is easy to forget that many relevant documents are missed
 - Documents that are “close” are not retrieved

Are Boolean Retrieval Models Still Relevant?

- Many people prefer Boolean
 - Professional searchers (e.g. librarians, paralegals)
 - Some Web surfers (e.g. “Advanced Search” feature)
 - About 80% of WESTLAW searches are Boolean
 - What do they like? Control, predictability, understandability
- Boolean and free-text queries find different documents
- Solution: retrieval models that support free-text and Boolean queries
 - Recall that almost any retrieval model can be Exact Match
 - Extended Boolean (vector space) retrieval model
 - Bayesian inference networks

Vector Space Retrieval Model

- Best Match retrieval
- **Approach:** any text object is represented by a term vector
 - Examples: documents, queries,…
- Similarity is determined by distance in a vector space
- The SMART system
 - Developed at Cornell University, 1960-1999
 - Still used widely
Views of Ad-hoc Retrieval

• **Boolean**
 - Query: a set of FOL conditions that a document must satisfy
 - Retrieval: deductive inference

• **Vector space**
 - Query: a short document
 - Retrieval: finding similar text objects
 - Usually documents
 - Could be passages, sentences, …

Vector Space Retrieval Model: Representation

<table>
<thead>
<tr>
<th>Term1</th>
<th>Term2</th>
<th>Term3</th>
<th>Term4</th>
<th>…</th>
<th>Termn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doc1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>…</td>
</tr>
<tr>
<td>Doc2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>…</td>
</tr>
<tr>
<td>Doc3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

• A document is represented as a vector of binary values
 - One dimension per term in the corpus vocabulary
 - An unstructured query can also be represented as a vector
 - Query

Linear algebra is used to determine which vectors are similar

Vector Space Representation

• Documents and queries are vectors in a Real vector space

• Words correspond to orthonormal Basis
 - Each word correspond to one basis vector (i.e. direction in the vector space)
 - Determines what can be described in the vector space
 - Basis vectors are orthogonal (⇒ linearly independent), i.e. a value along one dimension (i.e. word) implies nothing about a value along another.

• What should be the basis vectors for information retrieval?
 - “Basic concept”
 - Difficult to determine
 - Orthogonal (by definition)
 - A relatively static vector space

• Terms (words, word stems):
 - Easy to determine
 - Not really orthogonal (orthogonal enough?)
 - Each term corresponds to one dimension

Vector Space Similarity

• Similarity is inversely related to the angle between the vectors

• Doc2 is more similar to the query

• Rank the documents by their similarity to the query

Document and Query Vectors

• The vector elements x_i (i.e. term weights) represent term presence, importance, or “representativeness”

\[
\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
\]

• Some common choices
 - $x_i=1$ if term is present, $x_i=0$ if term not present in document
 - $x_i=TF$
 - f is a function of the frequency of the term i in the document
 - $x_i=TF \times IDF$
 - TF is a function of the frequency of the term i in the document
 - IDF indicates the discriminatory power of term i
Term Weights Revisited

- **Term frequency (TF)**
 - The more often a word occurs in a document, the better that term is in describing what the document is about
 - Has some basis in the 2-Poisson probabilistic model of IR
 - Often normalized, e.g. by the length of the document
 - Sometimes biased to range [0.4..1.0] to represent the fact that even a single occurrence of a term is a significant event

 \[
 TF = \frac{tf}{doc_length} \quad TF = \frac{tf}{\max{tf}} \quad TF = \frac{tf}{\frac{doc_length}{\text{avg}_doc_length}}
 \]

- **Inverse document frequency (IDF)**
 - Terms that occur in many documents are less useful for discriminating among documents
 - Document frequency (df): number of documents containing the term
 - IDF often calculated as
 - Sometimes scaled to [0..1]
 - \(TF \) and \(IDF \) are used in combination as product \(xi = TF \times IDF \)

\[
IDF = \log\left(\frac{N}{df}\right) + 1
\]

\[
IDF = \log\left(\frac{N + 0.5}{df}\right) \quad \log(N + 1.0)\]

Vector Space Similarity

- **Cosine of the angle between the two vectors**
 - Binary term vectors
 - Weighted term vectors

\[
\cos \theta = \frac{|X \cap Y|}{\sqrt{|X||Y|}}
\]

\[
\sum \frac{x_i y_i}{\sqrt{\sum x_i^2 \sum y_i^2}}
\]

Vector Space Similarity: Example

<table>
<thead>
<tr>
<th>Term</th>
<th>wts</th>
<th>Term</th>
<th>wts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>0.0</td>
<td>Doc1</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>Doc2</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td></td>
<td>0.6</td>
</tr>
</tbody>
</table>

\[
\text{Sim}(D_1, Q) = \frac{(0*0.3) + (0.2*0.1) + (0*0.4)}{\sqrt{0^2 + 0.2^2 + 0.2^2} \times \sqrt{0.3^2 + 0.1^2 + 0.4^2}} = \frac{0.02}{0.10} = 0.20
\]

\[
\text{Sim}(D_2, Q) = \frac{(0*0.8) + (0.2*0.5) + (0*0.6)}{\sqrt{0^2 + 0.2^2 + 0.2^2} \times \sqrt{0.8^2 + 0.5^2 + 0.6^2}} = \frac{0.10}{0.22} = 0.45
\]

Inverted Index for Vector Space Model

- **Simple algorithm**
 - “word1 OR word2 OR ...”
 - Keep track of partial scores in accumulator
 - Might rank 100,000 document just to get the top 10 documents
 - Large memory overhead for high frequency words

- **Refinements to improve efficiency**
 - Compute only the top \(k \) documents accurately
 - Process high-weight terms first (e.g. sort inverted lists by decreasing score)
 - Limit number of accumulators (e.g. introduce accumulator only for documents with high-weight term)

Top-Docs Ranking

- **Example:**
 - Find top 1 document only
 - Equal query weights of 1 for both query terms

- **Pruning criteria**
 - Bound on score of single document
 - Remaining maximum weight

- **Relax conditions**
 - Not necessarily optimal
 - Trade time/space for accuracy

<table>
<thead>
<tr>
<th>Term</th>
<th>DocID</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>6</td>
<td>0.7</td>
</tr>
<tr>
<td>database</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>human</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>learning</td>
<td>2, 0.9, 1, 0.5, 3, 0.1</td>
<td></td>
</tr>
<tr>
<td>machine</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>operating</td>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td>systems</td>
<td>6</td>
<td>0.3, 5, 0.2, 3, 0.2</td>
</tr>
<tr>
<td>theory</td>
<td>4</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Vector Space Similarity: Summary

• **Standard vector space**
 – Each dimension corresponds to a term in the vocabulary
 – Vector elements are real-valued, reflecting term importance
 – Any vector (document, query, …) can be compared to any other
 – Cosine correlation is the similarity metric used most often