What Information can Hyperlinks Convey?

Isolated documents:
- Retrieval methods have focused on the content of the document
- Information is provided by the author itself

Hypertext and citations:
- Other documents make statement about document
- Structural organization of collection shared among community

Possible uses:
- Relatedness of documents
- Centrality of documents
- Authority / prestige of documents
- Social network behind information network
- ...
WWW Pages Classify Other WWW Pages

Hypertext Structure Gives Info about Relatedness!

Idea:
- two pages are similar (with respect to some aspect), if they are frequently co-cited
- the more frequently two pages are co-cited, the more similar they are

Algorithm for finding similar pages:
- use Google to find all pages that link to a given set of pages
- download those pages and count the frequency of their links
Experiment: Human vs. WebLearn

Fill in the missing page:

Hypertext Structure as a Measure of Similarity

- co-citation groups pages by some aspect of similarity
 - aspect not necessarily easy to identify automatically
 - noise: “best viewed with internet explorer”
 - not all aspects of similarity on the WWW
- Bibliometrics [Small, 1973]
- Use for finding related WWW pages [Joachims et al. 1995/1997]
 [Larson, 1996], [Dean & Henzinger, 1999], Commercial: Netscape,
 Google, etc.
- Use in text classification [Chakrabarti et al., 1998], [Joachims et al.
 2001]
Matching User Expectations in Text Retrieval

Problem: Many pages match the word “university”, but what are the most important (most popular) pages on this topic?

In-Links as an Endorsement

Approach 1:
- A document is more important / popular, the more in-links (backlinks) it has.
Simplified PageRank

Approach 2:
A document is more important, if it is linked to from many important documents.
- \(u, v \): documents
- \(F(u) \): outlinks out of \(u \)
- \(B(u) \): inlinks pointing to \(u \)
- \(r(u) \): importance of \(u \)

\[
r_{i+1}(u) = \tilde{a} \sum_{v \in B(u)} \frac{r_i(v)}{|F(v)|}
\]

Iteration of Simplified Page Rank

What is the problem with this simplified algorithm?
PageRank

A document is more important, if it is linked to from many important documents + some smoothing.

- u, v: documents
- $F(u)$: outlinks out of u
- $B(u)$: inlinks pointing to u
- $e(u)$: inherent importance of u (sum to 1)
- d: trade-off parameter
- $r(u)$: importance of u

$$r_{t+1}(u) = (1 - d) \bar{a}_i \frac{r_i(v)}{|F(v)|} + de(u)$$

Normalize r so that $||r||_1 = 1$.

Random Surfer

Model:

- Forever:
 - with high probability, follow a random link on the page.
 - or with low probability (e.g. 15%), jump to a random page.

What is the probability, that the surfer is currently at page u?

$=>$ Probability distribution over pages for Markov Random Walk

Good approximation for “probability that user wants to see this page” !?
Searching with PageRank

Retrieval function combines:
- vector space similarity
- weighting of html tags
- proximity of matches
- anchor text
- PageRank

=> trade-off with different weights

Hubs and Authorities

Idea [Kleinberg, 1998]: A good hub points to many authorities, and an authority is pointed to by many good hubs.

\[
\text{hub}(u) = \sum_{v \in \text{outlinks}(u)} \tilde{a}_{uv} \text{authority}(v)
\]

\[
\text{authority}(v) = \sum_{u \in \text{outlinks}(u)} \tilde{a}_{vu} \text{hub}(u)
\]

=> Eigenvectors of \(A' A\) (authority) and \(AA'\) (hub)