Blastn’s seed length

- Recall: blastn’s seed match is of length $w = 11, 12$
 - exact match
 - $w > 10$ is compatible with the packing speedup
 - a seed match is extended to a gapless alignment

- What is the significance of w?
w controls the sensitivity

- The sensitivity of the seed is the percentage or “real alignments” discovered
 - The real alignments/similarities can come from a db of alignments
 - or from a model
- We shall assume that the gapless extension never fails so w essentially determines the sensitivity
- As w decreases the sensitivity increases
 - as it is more likely that an aligned pair of sequences would contain a perfect match of length w
\(w \) effects the search speed

- Assuming an aggressive search (high sensitivity) the search speed is largely determined by the number of random seed matches
 - with each one triggering an extension attempt
- Let \(A_{ij} = A_{ij}(w) \) be the event: a match of length \(w \) starts at position \(i \) of the first sequence and \(j \) of the second
- The expected number of random seed hits is:
 \[
 E_0 \sum_{ij} 1_{A_{ij}} = \sum_{ij} E_0(1_{A_{ij}}) = \sum_{ij} P_0(A_{ij}) \approx mnP_0(A_{ij}) = mn\rho^w \approx \frac{mn}{4^w}
 \]
- One can prove that \(\rho \geq 4 \)
- Thus, lowering \(w \) from 11 to 10 increases the expected number of random matches by a factor of 4 (at least)
Human-mouse analysis (Waterstone et al., Nature 2002)

Ma, Tromp and Li: a seed is a pattern of w matches

Spaced seeds seem better:
 - for the same weight w the sensitivity can increase

For example, $\pi = 111-1$ designed to detect
 - \ldotsACC?T\ldots
 \ldotsACC?T\ldots

is “typically” more sensitive than $\pi_c = 1111$ which detects
 - \ldotsACCT\ldots
 \ldotsACCT\ldots
Why are spaced seeds better?

- Related to a problem studied by John Conway: which word are you more likely to see first in a random text
 - ABC or AAA?
- In any given position what is the probability of seeing ABC?
 - $1/26^3$
 - What about AAA?
- The expected number of letters between consecutive occurrences of ABC is 26^3 (renewal theory)
 - Same for AAA
- Given this symmetry which word would you expect to see first ABC or AAA?
- The correct answer is ABC
Advantage spaced seeds

- Given w the expected number of random seed matches is identical for all seeds of weight w
 - therefore the running time is about the same

- A spaced seed would typically yield better sensitivity than blastn’s contiguous w-mer

- Conversely, by choosing an optimal spaced seed of weight $w + 1$ we can reduce the random hits (FP) by a factor of 4
 - and attain a sensitivity \geq sensitivity(π^w_c) (blastn’s contiguous w-mer)

- Using db of real alignments, Buhler, K and Sun verified that an optimally selected seed of weight 11 is more sensitive than π^{10}_c

- NCBI’s BLAST server has over 10^5 queries/day
Evaluating a seed

• A seed’s quality: weight vs. sensitivity

• Determine the sensitivity:
 • experimentally: learn the sensitivity from a database of real alignments
 ▶ computationally intensive
 • parametrically: using a model
 ▶ can yield some insight on what makes some seeds better
 ▶ can lead to designing seeds rather than choosing ones
Model of a similarity region

• Our similarity region models a gapless subsection of the alignment:
 • no gaps
 • fixed length, l, shorter than typical alignment region (64)

• Key step: translate the gapless alignment to a single “mismatch string”:
 • binary string S, where $S(i) = \begin{cases} 1 & x_i = y_i \\ 0 & x_i \neq y_i \end{cases}$

 ▶ For example,
 TcgAaTCGtTACt
 TatAcTCGgTACA
 1001011101110

• We model S as k-th order Markov chain ($k = 0, 1, \ldots , 6$)
 • for coding region use a 3-periodic transition probabilities
Seed’s sensitivity

- A seed is a pattern of 1s, corresponding to positions of identical letters in the matched pair of words
 - for example, $\pi = 111-1$

- π detects S if its patterns of 1s occurs in S
 - For example, the similarity
 - \triangleright TcgAaTCGtTACt
 - TatAcTCGgTACa
 - 1001011101110
 - \triangleright is detected by $\pi = 111-1$ but not by $\pi_c = 1111$

- Sensitivity: $P\{\pi$ detects $S\}$
Computing the seed’s sensitivity

- Simplified case: S is a sequence of iid Bernoulli random variables
 - $p = P(S[i] = 1)$

- Given $l = |S|$ and a seed π compute $P(E)$ where $E = \{\pi$ detects $S\}$

- Let $s(\pi)$ be the span of the seed: $w + \#$ don’t care positions
 - for $\pi = 111-1$, $s(\pi) = 5$

- Let $H_n = H_n(\pi) = \{\pi$ occurs at $S[n : n + s - 1]\}$

- Then, $P(E) = P(\bigcup_{n=1}^{l-s+1} H_n)$
 - Clearly, $P(H_i) = p^w$
 - But the occurrences overlap
 - H_n are not independent
Inclusion-Exclusion:

\[P(E) = \sum_{n=1}^{l-s+1} P(H_n) - \sum_{i<j} P(H_i \cap H_j) + \ldots \]
Better techniques

- The combinatorics of the inclusion-exclusion formula are quite messy
- Use Guibas-Odlyzko overlap polynomials (1981): $O(ls2^{3(s-w)})$
- Nícodeme, Salvy, and Flajolet (1999): $O(lw2^{s-w})$
 - Construct an automaton that accepts the strings that end with the unique occurrence of π
 - The states are prefixes of π
 - Upon input x transition from state α to β: the longest suffix of αx that is a prefix of π
NSF’s automaton for $\pi = 111-1$
Adding probability to the automaton

- The automaton is ignorant of the probability space
- A naturally associated Markov chain, X, can be defined on the states of the automaton:

$$P_m(\alpha, \beta) = \begin{cases} P_S(x) & \text{there is an edge labeled } x \text{ from } \alpha \text{ to } \beta \\ 0 & \text{otherwise} \end{cases}$$

- By construction the probability of any automaton path starting from \emptyset is the same as the probability of the corresponding substring
Computing the sensitivity from the automaton

- Let T be the accepting state (absorbing, no transitions out)

- Claim: $P_S(E) = P_m(X_l = T | X_1 = \emptyset)$

- Proof.
 - $E = \bigcup_i E_i$ where the event
 $$E_i = \{S : 1\text{st occurrence of } \pi \text{ ends with } S(i)\}$$

 - Partition each E_i to equivalence classes of strings according to their prefix of length i
 - each class corresponds to a distinct path of length i from \emptyset to T
 - the probability of the class is identical to that of the path

 - Summing the probabilities of all classes completes the proof
Computing the chain’s probability

- \(P_m(X_l = T | X_1 = \emptyset) = P_m^l(\emptyset, T) \)

- Let \(N = \text{number of automaton/chain states} \)
 - \(N = O(w2^{s-w}) \)

- For a general transition matrix \(P \), computing \(P^2 \) generally requires \(O(N^3) \) steps

- We only need \(P^l(a, b) \) for a particular \(a \) which generally requires \(O(lN^2) \)

- However, \(P_m \) is a sparse transition matrix:
 - there are two transitions out of every state
 - there are at most \(2N \) non-vanishing entries in \(P_m \)

- Thus, we can compute \(P_m^l(\emptyset, T) \) in \(O(lN) \) steps
What about Markov strings?

- So far we assumed a Bernoulli mismatch string
- Will this scheme work for a Markov mismatch string?
- Key: probabilities of string and corresponding path should agree
- Suppose S is generated by a 2nd order Markov chain
 - If we are at state “111” what is the probability of moving to state “1110”?
 - $P_S(0|11)$
 - If we are at state “∅” what is the probability of moving to state “1”?
 - depends on how we got to ∅
- The states at depth \geq order of chain have sufficient memory
- We need to add memory to the “leaner” states
Extension to Markov strings
Finding Optimal Seeds

• Given a black box which computes the sensitivity find an optimal seed for a given mismatch model and w

• Short sighted approach: local search strategy
 • hill climbing

• Brute force approach: exhaustive enumeration for all $s \leq s_{max}$
 • not feasible for the empirical sensitivity

• For example, finding the optimal seed with $w = 11$ and $s \leq 22$ for a Bernoulli model with $l = 64$, $p = 0.7$
 • takes about 1 hour for exhaustive search on a 2.5GHz P4
 • a local search yields approximate results in seconds

• By design: identify the salient features of good seeds
Bernoulli sensitivity of optimal seed
Mandala’s optimal seeds: non-coding

<table>
<thead>
<tr>
<th>Seed</th>
<th>Pattern</th>
<th>$P_5(E)$</th>
<th>Found $\times 10^3$</th>
<th>Time (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_c</td>
<td>${0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}$</td>
<td>0.607</td>
<td>220</td>
<td>382</td>
</tr>
<tr>
<td>π_{c10}</td>
<td>${0, 1, 2, 3, 4, 5, 6, 7, 8, 9}$</td>
<td>0.712</td>
<td>246</td>
<td>502</td>
</tr>
<tr>
<td>π_{ph}</td>
<td>${0, 1, 2, 4, 7, 9, 12, 13, 15, 16, 17}$</td>
<td>0.689</td>
<td>252</td>
<td>417</td>
</tr>
<tr>
<td>π_{N0}</td>
<td>${0, 1, 2, 5, 7, 10, 11, 14, 16, 17, 18}$</td>
<td>0.680</td>
<td>252</td>
<td>417</td>
</tr>
<tr>
<td>π_{N1}</td>
<td>${01, 2, 3, 5, 8, 9, 12, 13, 14, 15}$</td>
<td>0.699</td>
<td>252</td>
<td>423</td>
</tr>
<tr>
<td>π_{N2}</td>
<td>${0, 1, 2, 3, 6, 8, 9, 10, 12, 13, 14}$</td>
<td>0.707</td>
<td>253</td>
<td>424</td>
</tr>
<tr>
<td>π_{N3}</td>
<td>${0, 1, 2, 3, 5, 6, 9, 11, 12, 13, 14}$</td>
<td>0.704</td>
<td>252</td>
<td>422</td>
</tr>
<tr>
<td>π_{N4}</td>
<td>${0, 1, 2, 4, 5, 6, 8, 11, 12, 13, 14}$</td>
<td>0.707</td>
<td>253</td>
<td>425</td>
</tr>
<tr>
<td>π_{N5}</td>
<td>${0, 1, 2, 3, 5, 6, 7, 10, 12, 13, 14}$</td>
<td>0.709</td>
<td>253</td>
<td>424</td>
</tr>
</tbody>
</table>

Gapped alignments found and running times are on 500 megabases of homologous noncoding regions from human and mouse.
Average detection probabilities of 1000 random seeds given by 0-th (solid) and 5-order (dashed) Markov models. Error bars are 95% CI.
Data generation

- Human-Mouse genomes from UCSC Genome Browser
- Extracted 1262 pairs ($\approx 2.65 \times 10^9$) annotated as syntenic regions
 - orthologous regions with no major internal rearrangements
- Pairs were masked for repeats and low-complexity
- Divide into coding and non-coding regions (Twinscan predictions)
- Estimate 0-5th order non-coding Markov transition probabilities
 - by Sampling $\approx 1.4 \times 10^6$ ungapped alignments of $l = 64$ and 70-75% identity from non-coding pairs
 - higher identity rate: harder to distinguish seeds
 - sampling strategy is important
- Tested on 449 pairs of syntenic fragments ($\approx 500 \times 10^6$ unmasked)
 - seed hits followed by BLAST’s ungapped followed by banded SW
What’s wrong with it?

Going back to Conway’s problem: why should we wait longer for AAA than for ABC?

The average interarrival times (letters between occurrences) is the same for AAA and ABC

Occurrences of AAA have certain tendency to cluster

Occurrences of ABC cannot cluster

Therefore interarrival times between clusters of AAA are typically longer

More likely to see ABC before AAA
Analogy

• Arriving at a random time to a train station, which train line are we more likely to see departing first:
 • one that has 5 trains departing one per minute for the first 5 minutes after the hour
 • or one that has 5 trains departing at 12-minute intervals?
Shall we rule out π_c?

- What happens if $l = w$?
 - Due to its compactness, in some (pathological) cases π_c is the optimal seed

- Another example is when p is sufficiently small
 - Proof: inclusion-exclusion

Moreover, there are seeds that will always be worse

Claim 1. If π is an arithmetic progression with $d > 1$, e.g. $\pi = \{0, 2, 4 \ldots\}$, then $P(\pi \in S(1 : l)) < P(\pi_c \in S(1 : l))$

- However, if we “level the playing field” then

Claim 2.

$$P(\pi \in S(1 : l + s - w)) > P(\pi_c \in S(1 : l))$$
Asymptotic sensitivity

- The last claim somewhat goes out on a limb but
- There exists $\lambda = \lambda(\pi) \in [0, 1]$ and $\beta = \beta(\pi) > 0$ s.t.

$$P(\pi \notin S(1 : l)) \sim \beta \lambda^l$$

- λ is the maximal eigenvalue of the automaton transition matrix

- **Corollary**: $\lambda(\pi_c) \geq \lambda(\pi)$

- **Proof:**

$$1 < \frac{P(\pi_c \notin S(1 : l))}{P(\pi \notin S(1 : l + s - w))} \sim \frac{\beta(\pi_c) \lambda(\pi_c)^l}{\beta(\pi) \lambda(\pi)^{l+s-w}}$$

$$\Rightarrow \quad \frac{\beta(\pi_c)}{\beta(\pi) \lambda(\pi)^{s-w}} \lim_{l \to \infty} \left[\frac{\lambda(\pi_c)}{\lambda(\pi)} \right]^l \geq 1,$$

which proves the claim
Asymptotic sensitivity - cont.

- Even one space can lead to better asymptotical result

- Let $\pi = 111 \ldots 1 - 1$ and π_c be of weight $w \geq 2$

 Claim 3. $\lambda(\pi_c) > \lambda(\pi)$

 - Example: if $w \geq 4$ then for $l = w + 3$ and $p > 1/2,$

 $$P(\pi \in S(1 : l)) > P(\pi_c \in S(1 : l))$$

- Conjecture: all non-periodic spaced seeds satisfy $\lambda < \lambda(\pi_c)$
Asymptotically optimal seeds

• Studying asymptotically optimal seeds elucidates structure

• The following seeds seem to be asymptotically optimal

 - $w = 3$: $\{0, 1, 3\}$
 - $w = 4$: $\{0, 1, 4, 6\}$
 - $w = 5$: $\{0, 3, 4, 9, 11\}$
 - $w = 6$: $\{0, 1, 8, 11, 13, 17\}$
 - $w = 7$: $\{0, 2, 3, 10, 16, 21, 25\}$
 ▶ last one took a month of CPU time

• What's the rule?
Golomb rulers

- Every positive difference appears exactly once
- Minimal span with this property
- From James Shearer’s home page (IBM) a minimal Golomb ruler of \(w = 11 \) (marks):
 - \(\{0, 1, 4, 13, 28, 33, 47, 54, 64, 70, 72\} \)
 - Demonstratively more sensitive for long sequences than the previously known optimal seed
- How was this determined?
 - \(2^{s-w} \) is too big: can’t build automaton
 - Take large \(l \) (700)
 - Draw random mismatch strings of length \(l \)
 - Check in how many of those does the seed occurs
 - Obtain a high confidence interval for \(P(\pi_G \in S(1 : l)) \)
Golomb rulers and optimal seeds

- The contiguous seed is in some sense the worst
 - it suffers from heavy dependencies between adjacent occurrences

- Hypothetically independent occurrences provide optimal sensitivity
 - more precisely, yields an upper bound on sensitivity

- Golomb rulers represent minimal possible overlap (at most 1 in each shift)
 - best approximation of independence given that you cannot avoid the overlap

- Open questions:
 - Can this be proved (independently of p)?
 - If there are multiple optimal Golomb rulers which one is the asymptotically optimal seed?