String comparison problems, Myers (91)

- So far our goal was to maximize the alignment’s similarity score
- Dual perspective: minimize the distance
- Intuitively: look for a minimal “number” of evolutionary operations (substitution, deletion, insertion) that would transform one sequence into the other
- Define $D(x, y) := \text{minimal cost to transform } x \text{ to } y$
- Generalized-Levenshtein distance
- In case of the Levenshtein (edit) distance $\delta(a, b) = 1_{a \neq b}$, where $a, b \in \Sigma \cup \{-\}$
- Dual problem: longest common subsequence of x and y: $x_{k_i} = y_{l_i}$
- These problems arise in comparing contents of files and correcting spelling errors
String comparison problems (cont.)

- The 0-1 nature of the cost function allows some improvements

- Masek and Paterson (1980): subquadratic $O(mn / \log^2 n)$ (wlog $n \geq m$)

- Ukkonen (85) and Myers (86): $O(DN)$ where $D = D(x, y)$
 - The more similar are the sequences the faster it runs
 - D can be $O(m + n)$
 - Myers: the algorithm "expected" running time is $O(N + D^2)$
Approximate string matching

- Given a query pattern, a db, a scoring scheme and a threshold look for all words in the db that lie within the threshold distance to the query
- For example, the scoring is the edit distance
- Use an $m \times L$ (virtual) alignment cost table, where m is the size of the query and L is the db
- Based on Fickett (84): compute column by column going as deep as the previous column or the threshold
- If the text is "random" $O(DL)$ where D is the threshold
Searching for alignments against large databases

- Given that a guaranteed alignment costs $O(nm)$ it is impractical for frequent large db searches

- The two most popular heuristic tools are FASTA (88) and BLAST (90)

- Both try to rapidly locate promising starting points

- In the process the optimal alignment might get lost
Basic Local Alignment Search Tool

• First version of BLAST was written by Altschul, Gish, Miller, Myers and Lipman (90)

• A second version by Altschul et al. (97)

• There are many flavors of BLAST:
 • BLAST or blastp (AA query - AA db)
 • blastn (DNA query - DNA db)
 • blastx (DNA query - AA db: translate query in all 6 reading frames)
 • tblastn (AA query - DNA db: translate db in all 6 reading frames)
 • tblastx (DNA query - DNA db: translate query and db in all 6 reading frames)

• blastp and blastn are essentially the only two “real” variations
BLAST (cont.)

- BLAST1 was designed to find either a Maximal Segment Pair, a maximally scored local ungapped alignment
- or a list of High-scoring Segment Pairs
- Finding a combination of HSPs was a surrogate for doing a gapped alignment
- The main idea of BLAST is that a high scoring alignment should contain a high scoring aligned pair of words
- BLAST1 rapidly scans the db for an aligned pair of words (of fixed length w) that scores above a threshold T
- Any such word pair encountered (hit) is extended to an ungapped alignment which is recorded if it scores above S_0
- the expected number of random HSPs scoring above S_0 is about 10
All you wanted to know about BLAST (I)

- BLAST has 3 steps:
 - Given the query compile a list of all high scoring words:
 - let α_i denote the ith word of the query, then

 \[
 L := \bigcup_i \{ \beta \in \Sigma^w : S(\beta, \alpha_i) \geq T \}
 \]

 \(N_T(\alpha_i) := T\) neighborhood of α_i

 - How big/small can $N_T(\alpha_i)$ be?
 - typically 50 ($w = 4, T = 16$, PAM120)
 - Build an automaton that accepts the language L
 - Accepts on transition (Mealy) as opposed to accepts on states (Moore)
 - Using the automaton scan the db
 - Hash tables turned out to be slower
- Extend hits (aligned pair of words scoring above T)
 - Extension is attempted on both ends
 - Using “X dropoff” strategy: extend till the score drops by more than X from the best score observed so far
 - Dropoff parameter is “-y” (AA default 3, DNA is 11)
 - Over 90% of the execution time is spent at this step
 - An X-dropoff version of Smith-Waterman was tested but rejected as too costly for the marginal added sensitivity
blastn

- In blastn $L = \bigcup \alpha_i$ and $w = 11, 12$

- Preprocessing: db is compressed by packing 4 nucleotides per byte

- If $w \geq 11$ then any hit would necessarily have an 8-mer that lies on a byte boundary

- The db is scanned \textit{byte-wise} for hits of length two bytes

- What do we need to do with L?

- Special problems with DNA: locally biased base composition, repeats

- During the packing of the db, words that are significantly over-represented are stored for future filtering

- Before scanning the db repeat elements are removed from the query
All you wanted to know about BLAST (II)

- Bottom line: “gapped BLAST” that is $3 \times$ faster than blastp. How?
- Over 90% of the time blastp spends in extending seeds
- HSPs are usually longer than a single word pair
- Multiple word pairs can typically be detected in an HSP
- Therefore require two consistent hits (same diagonal) to start an extension:
 - Two non-overlapping word pairs, each scoring above T
 - that lie at a distance of $\Delta \leq A$
 - Δ is the same for both sequences
- T by itself will decrease: more single word pair hits but fewer extensions as most of those will not form a consistent pair
sensitivity of two- vs. one-hit

HSPs were simulated using BLOSUM62, AA frequency from Robinson and Robinson (91), 10^5 per nominal score 37-92
two- vs. one-hit example

15 hits $\geq 13 (\,'+'\,),$ additional 22 hits $\geq 11 (\,'.'\,), A = 40
Implementing the two-hit strategy

- The diagonal of a word pair that starts at \((x_1, x_2)\) (db,query) is \(x_1 - x_2\)
- For each diagonal \(d\), record \(x_1\) of the last word pair that scores above \(T\) with \(d = x_1 - x_2\)
- When while scanning the db a new word pair hit is found at \((x'_1, x'_2)\) check if the recorded \(x_1\) under \(d = x'_1 - x'_2\) satisfies \(x'_1 - x_1 \leq A\)
 - Note that \(x'_1 > x_1\)
- Do we really need an array of the size of the db?
 - An array of size \(3A\) would do \((\text{mod } d)\)
Gain of the two-hit strategy

- Claim(?): using BLOSUM62, the R&R marginals, $w = 3$, $T_1 = 13$, $T_2 = 11$ and $A = 40$, on average there are about
 - 3.2 more single word hits using T_2
 - 7.14 more one-hit extensions than two-hit ones
- It is 9 times faster to test for a gapless extension than to do it
- Corollary: two-hits seed extension is about twice as fast on average
- How can we justify the claim?
 - MC simulation, or analytic
 - we have the distribution of $S'(a, b)$ under H_0
 - find the distribution of $S'(\alpha, \beta)$ (words of length $w = 3$)
 - find the probability of having two hits within $A = 40$ positions
Gapped alignments

- With BLAST1 people would often set T much lower than needed for the probability of missing an HSP to be at most, say, 0.04

- The main reason was that BLAST1 would detect significant gapped alignments by finding its HSPs

- Solution: perform X-dropoff ("-X, AA default 15") gapped extension on selected few HSPs
 - An HSP with score $\geq S_g$ is subjected to gapped extension
 - S_g is set so that such extension will occur once in about 50 db sequences

It is important to choose a reasonably good initially aligned seed
 - Choose the central residue pair in an optimally scored segment of length 11
dropoff gapped extension
dropoff gapped extension - the alignment
deadend gapped extension