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An approach to loop prediction that starts with a database search is pre-
sented and analyzed. To obtain meaningful statistics, 130 loops from 21
proteins were studied. The correlation between the internal conformation
of the loop and the conformation of the neighboring stem residues was
examined. Distances between Ca and Cb of the immediate neighbor resi-
dues at each end select template loops as well as more complex (e.g.
three residues on either side) matching criteria. To have a high prob-
ability that the best possible loop candidate in the database is included in
the set, relatively large cutoffs for matching the interatomic distances of
the stem residues have to be used in the template loop selection pro-
cedure; for loops of length 5, this results in an average of 1000 loops and
for loops of length 9, the number is about 1500. The required number
increases only slowly with loop length, in contrast to the exponential
time increase involved in direct searches of the conformational space. The
best loops among the large number of candidates can be determined by
ranking them with the standard CHARMM non-bonded energy function
(without electrostatics) applied to the backbone and Cb atoms. The same
representation (backbone plus Cb) can be used to optimize the loop orien-
tations relative to the rest of the protein by constrained energy minimiz-
ation. Target loops that have many non-bonded contacts with the protein
yield better results so that analysis of the non-bonded contacts of the
selected template loops is useful in determining the expected accuracy of
a prediction. The method for loop selection and optimization predicted
eight (out of 18) loops of up to nine residues to an RMSD better than
1.07 AÊ relative to the crystal structure; for 17 of the 18 loops, one of the
three lowest energy template loops had an RMSD of less than 1.79 AÊ .

The prediction of antibody loops from a database search is more effective
than that for non-antibody loops. Provided that they belong to one of the
canonical classes, very similar antibody loops are certain to exist in the
database. Superposition of the stem residues for antibody loops also
results in a better orientation than with arbitrary target loops because the
neighboring residues tend to have a more similar b-strand structure. Two
H3 loops (for which no canonical structures have been proposed) were
predicted with reasonable accuracy (RMSD of 0.49 AÊ and 1.07 AÊ ) even
though no corresponding antibody loops were in the database.
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Introduction

Loops in proteins can be de®ned as segments that
do not correspond to a-helical or b-strand second-
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ary structure. They are often of functional import-
ance and can have key roles in recognition
(antibody hypervariable loops), ligand binding
(e.g. triosephosphate isomerase; Joseph et al., 1990),
DNA-binding (M-13 phage; Coleman et al., 1987),
or forming enzyme active sites (e.g. serine pro-
teases; Wlodawer et al., 1989). In the context of
homology modeling, the most dif®cult unsolved
# 1997 Academic Press Limited
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problem after sequence alignment, is the prediction
of loop structures (Mosimann et al., 1995; SÏali,
1995).

Loops are usually found on the surface of proteins,
where they connect secondary structure elements.
Three or four residue loops that connect two sec-
ondary structure elements and usually change the
chain direction, are called b-turns. The b-turns can
be categorized into a limited number of families
(Sibanda et al., 1989; Mattos et al., 1994), and are
sometimes regarded as a third class of secondary
structure. For ®ve-residue or longer loops, no
simple classi®cation has been possible (Sibanda
et al., 1989). Leszczynski & Rose (1986) analyzed
loops of 6 to 16 residues and reported their general
properties, such as size, compactness, and residue
composition. Because of the large degree of com-
pactness they found for such loops, they suggested
that they be regarded as a fourth class of second-
ary structure, with a large variability in confor-
mation. A general classi®cation of loops was made
by Ring et al. (1992). They divided loops of 4 to 20
residues into three classes (strap, omega, and zeta
loops) and a fourth, which is any combination of
the three. They were not able to ®nd a method for
predicting the group of a particular loop sequence,
based on hydrophobic periodicity or amino acid
positional preferences. The only loop analysis that
has considerable predictive power was developed
for ®ve of the six hypervariable antibody loops
(Chothia & Lesk, 1987; Chothia et al., 1992).

The pioneering modeling study of Greer (1980)
used a rather simple algorithm to insert loops from
homologous proteins into the target protein. More
recently, several methods have been introduced in
attempts to obtain a more general approach for the
prediction of loop conformations. Nevertheless, it
is fair to say that, although the various loop con-
struction methods have led to many interesting re-
sults, no reliable approach for longer loops
(length > ®ve residues) is available at this time
(Mosimann et al., 1995). In most attempts, a num-
ber of (often many) loop conformations are gener-
ated that meet endpoint requirements, which are
given by the residues at the termini of the
``known'' framework in the target structure. Be-
cause of the more or less ®xed endpoints of a loop
and its limited size, a large fraction of the available
conformational space can be explored. This makes
the problem much more tractable than the general
protein folding problem (Creighton, 1992). All of
the construction methods assume that the end-
points are known within certain tolerances. As we
describe in this paper, the choice of endpoint cri-
teria is not obvious and can have a signi®cant
effect on the results. The construction methods
include more or less exhaustive dihedral angle
searches (Bruccoleri & Karplus, 1985; Moult &
James, 1986; Bruccoleri et al., 1988; Martin et al.,
1989; Dudek & Scheraga, 1990; Borchert et al.,
1994), minimum perturbation ``random tweak''
methods (Fine et al., 1986; Shenkin et al., 1987),
molecular dynamics simulations (Bruccoleri &
Karplus, 1990; Tanner et al., 1992), Monte Carlo
searches with simulated annealing (Collura et al.,
1993; Carlacci & Englander, 1993), dynamic pro-
gramming algorithms (Vajda & DeLisi, 1990;
Finkelstein & Reva, 1992), genetic algorithms
(McGarrah & Judson, 1993; Ring & Cohen, 1994),
bond scaling algorithms with relaxation (Zheng
et al., 1993a,b; Rosenbach & Rosenfeld, 1995; Zheng
& Kyle, 1996), and multicopy searches (Zheng et al.,
1994). In all of these methods, the search for loop
structures and their evaluation is done simul-
taneously. A complementary approach is based on
a search of known protein structures in the Broo-
khaven Protein Database (PDB; Bernstein et al.,
1977) for loop candidates and an evaluation of the
resulting candidates. This method was introduced
by Jones & Thirup (1986) to facilitate model build-
ing for crystallographic re®nement. In that appli-
cation the evaluation step is based on X-ray data
for the target protein. The residues adjacent to the
loop that is modeled (called ``stem residues'') are
de®ned, and a search is made through known
structures for segments whose stem residues can
be superposed on those of the target. The segments
are required to have the same length as the loop
that is modeled (called ``target loop''), but there is
no restriction on the sequence. This method of loop
generation has the advantage of fast construction
and a guarantee of obtaining physically reasonable
mainchain conformations. Use of the PDB-based
method requires a correlation between loop confor-
mation and the properties of the stem residues. It
was shown that for short loops (®ve residues), the
search method can be very effective, as judged by
the small deviation of the predicted loop confor-
mation from the (known) target loop (Summers &
Karplus, 1990). For longer loops no satisfactory
conformations could be found in many cases
(Summers & Karplus, 1990; Tramontano & Lesk,
1992); i.e. the superposition of the stem residues
often resulted in loop conformations that did
not match the target loop. A recent alternative
PDB-based method constructs the loops using a
fi � 1,ci dimer database (Sudarsanam et al.,
1995). For three short target loops (®ve residues),
they obtained promising prediction results
(RMSD < 0.54 AÊ ) by selecting the constructed loops
with the lowest RMSD of the stem residues with
respect to the target loop. Thus, this method ap-
pears to be similar in ef®cacy to that of Summers
& Karplus (1990). Another method that uses infor-
mation present in the PDB applied a neural net-
work to predict H3 loops of a set of antibodies
(Reczko et al., 1995). The neural network was
trained on a set of 1976 loops selected from the
PDB on the basis of their similarity to known H3
loops. The input of the neural network consisted of
the target loop sequence. For seven out of 20 target
loops with lengths of ®ve to nine residues, they ob-
tained predicted loops with RMSDs of 2 AÊ or less,
after loop superposition.

Given a set of conformations obtained by one of
the methods described above, it is necessary to se-
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lect those (the one) that are (is) likely to be the best
loop candidate(s) for the target protein. There are
two aspects in this selection. The ®rst concerns the
RMSD of the loops when they are superposed and
the second concerns their orientation in space. Both
aspects make use of energy functions of various
types, including those limited to dihedral angle
space (Dudek & Scheraga, 1990; Collura et al.,
1993, 1994; Carlacci & Englander, 1993), and those
in full Cartesian space (Summers & Karplus, 1990;
Tanner et al., 1992; Smith & Honig, 1994). Solvent
effects have been introduced by addition of explicit
water molecules (Tanner et al., 1992), the use of
simpli®ed solvent models (Collura et al., 1994), and
the calculation of the solvation free energy by use
of the Poisson-Boltzmann equation and surface
area-based terms (Smith & Honig, 1994). None of
these evaluation methods have been applied to a
wide enough range of loops to provide a meaning-
ful test.

In the present study, we develop an approach for
the PDB-based generation of a set of candidates for
the target loop, for the evaluation of the resulting
candidates, and for the optimization of the position
of best candidates in the target protein. Corre-
lations between the best candidate loop confor-
mations and the stem residues are determined and
the completeness of the available database for
different target loop lengths is tested. For the
analyses, we use 90 target loops in proteins whose
structures are known at high resolution (2 AÊ or
better). An additional 40 loops from antibodies are
included to examine whether they should be con-
sidered as a special case because of the existence of
canonical structures and of the success of predic-
tion methods for them (Chothia & Lesk, 1987). The
loops examined have lengths from four to 16 resi-
dues with primary emphasis on medium-sized
loops in the range six to 12. By testing various ap-
proaches for loop/stem superposition and for en-
ergy function selection and optimization on such
an extended set of loops, we are able to propose a
method that is likely to provide useful loop predic-
tions in a wide range of different proteins.

The following section describes the methods used
for the selection of the structural database and the
target loops, the generation of a set of template
loops, and the calculation of several loop and stem
properties, including structural similarities, se-
quence homologies, and interaction energies. The
nature of the energy functions tested for loop
evaluation and the methods for optimization of the
selected structures are given. The results are pre-
sented, and a concluding discussion follows.

While this work was in progress, Fidelis et al.
(1994) published a study of 11 target loops, ran-
ging in length from four to six residues and con-
sidered one aspect of the loop prediction problem.
They compared the performance of a systematic
search in dihedral space with a search of the PDB
for ®nding loop candidates and concluded that da-
tabase search methods are useful only for loops of
up to four residues. We come to the more optimis-
tic conclusion that the present PDB is useful for up
to nine residues, particularly if the candidate struc-
tures are subsequently evaluated evaluated and
optimized. This is of considerable signi®cance
since exhaustive conformational search methods
become very costly for longer loops.

Theory and Algorithms

Structural database selection

Loop backbone conformations were taken from the
coordinates of known protein structures in the
PDB. A subset of the available structures was se-
lected, as follows. (1) Only structures of 2.0 AÊ res-
olution or better were included. (2) Homologous
proteins from different sources were retained. (3)
For identical proteins with diffeent ligands, oxi-
dized versus reduced forms, and single site mu-
tations, only the highest resolution structure was
included. These selection criteria resulted in 173
different PDB ®les; the data can be obtained from
the authors. Because homologous proteins are re-
tained, the list of PDB ®les contains a large number
of redundancies with respect to the overall protein
fold. However, a similarity in overall protein fold
does not imply a similarity in conformations of
surface loops; an extreme example of this is pro-
vided by different hypervariable loop confor-
mations for the very similar antibody framework.
The variation in loop conformations for homolo-
gous proteins with the same framework structure
raises a realistic modeling problem and provides
additional data for analysis.

Each of the 173 protein structures was assigned to
a single structural family. The de®nition of these
structural families was obtained through structural
superpositions of Ca atoms (Pascarella & Argos,
1992). Some structures in the selected set were not
listed by Pascarella and Argos, and were assigned
to one of the existing families where, if possible,
the structural family classi®cation of SÏali &
Overington (1994) was used. If this was not poss-
ible, an additional family was created. A total of 75
structural families resulted from this classi®cation;
the data can be obtained from the authors.

Selection of target loops

A set of 45 target loops was selected from the list
reported by Leszczynski & Rose (1986). Only loops
from structures with a resolution of 2.0 AÊ or better
were included (Table 1). The length of the loops
ranged from six to 16 residues. The residue num-
bers that de®ne the target loops were taken from
Leszcynski & Rose (1986). Because the exact choice
of the ®rst and last residue of a loop is not unambi-
gous, another 45 loops were de®ned by starting
the previously de®ned target loops one residue
later, and by ending one residue earlier in se-
quence. This resulted in a set of 90 target loops.

In addition, a set of 40 antibody hypervariable
loops was selected, based on the loops that were



Table 1. List of protein loops, taken from the set of Leszczynski & Rose (1986), that were analyzed in this study

PDB Protein Loop no. Residues Loop no. Residues

1pcy Plastocyanin (poplar) 1.60 AÊ loop1 41±56 (16)
2act Actinidin 1.70 AÊ loop1 89±103 (15) loop4 139±144 (6)

loop2 141±156 (16) loop5 198±205 (8)
loop3 58±64 (7)

2apr Acid proteinase 1.80 AÊ loop1 76±83 (8) loop3 188±196 (9)
(Rhizopus chinensis) loop2 128±137 (10) loop4 202±210 (9)

2ptn Trypsin 1.55 AÊ loop1 69±80 (12) loop2 142±152 (11)
3app Penicillopepsin 1.80 AÊ loop1 42±56 (15) loop3 184±192 (9)

loop2 129±137 (9)
3est Elastase (porcine) 1.65 AÊ loop1 94±102 (11) loop3 216±224 (11)

loop2 142±152 (10)
3grs Glutathione reductase 1.54 AÊ loop1 83±89 (7) loop4 139±147 (9)

(human) loop2 268±274 (7) loop5 162±172 (11)
loop3 300±307 (8)

3sgb Proteinase B 1.80 AÊ loop1 93±103 (7) loop3 199±211 (9)
(Strep. griseus) loop2 118±124 (7)

3tln Thermolysin 1.60 AÊ loop1 55±70 (16) loop5 91±97 (7)
(native) loop2 188±203 (16) loop6 32±38 (7)

loop3 221±233 (13) loop7 44±53 (10)
loop4 248±255 (8) loop8 204±213 (10)

5cpa Carboxypeptidase A 1.54 AÊ loop1 205±213 (9) loop3 244±250 (7)
(bovine) loop2 231±237 (7)

8abp Arabinose binding 1.49 AÊ loop1 93±99 (7) loop3 203±208 (6)
protein loop2 142±148 (7) loop4 289±294 (6)

8gch g-Chymotrypsin 1.60 AÊ loop1 71±79 (9) loop2 95±102 (8)
9pap Papain 1.65 AÊ loop1 86±100 (15) loop2 138±153 (16)

The set was chosen to have only high-resolution structures, and a variety of different loop lengths. The loop residue numbering is
according to the PDB ®le. Loop lengths in residues are shown in parentheses.
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analyzed by Tramontano & Lesk (1992). These
loops are not limited to structures with resolutions
of 2.0 AÊ or better. They were included to determine
whether the existence of canonical structures for
antibody hypervariable loops (Chothia & Lesk,
1987) in¯uences the success rate of modeling these
loops by database methods.

The total set of target loops consisted of 130 target
loops with lengths between four and 16 residues.
When antibodies were being studied, the structural
database was expanded by an additional database
of known antibody structures.

Loop search algorithm

The method described by Summers & Karplus
(1990) was used to select loop backbones from the
structural database as possible candidates for the
target loop. Their approach was based on the work
of Jones & Thirup (1986). A set of m target dis-
tances t(i, j) were calculated between selected
atoms i and j of the stem residues, separated by a
n-residue gap in the target protein. The equivalent
set of distances r(P, S; k, l) for every n-residue seg-
ment S in each protein P in the database (template
protein), is also calculated. The difference between
the set of target distances and template distances
(RMSDdist) was de®ned as

RMSDdist �
X

i�k;j�l

�t�i; j� ÿ r�P; S; k; l��2
m�2n� 2�

24 351
2

�1�

The value of 2n � 2 in the denominator is equal to
the number of adjustable torsion angles (f/c) that
is present in a n-residue loop. If the RMSDdist is
lower than a speci®ed cutoff value, the mainchain
coordinates of the template loop are extracted from
the PDB ®le. The loops are checked for having the
correct geometry with respect to f/c angles, and
sp2/sp3 improper dihedral angles in both main-
chain and sidechains, following Summers &
Karplus (1990), and only loops satisfying certain
criteria are included. To obtain enough antibody
loops in the template loop set, the geometric cri-
teria had to be relaxed. Most antibody loops in the
PDB do not comply with the strict geometric cri-
teria, which is a re¯ection of their lower resolution
structures.

Here, we use the loop selection criteria in two
ways. First, the method is used in comparison stu-
dies to ®nd loops with backbone conformations
that are similar to a structurally known target
loop. In this case, the set of target distances are de-
®ned between atoms of the loop itself. The result-
ing distance comparisons are employed to evaluate
correlations between loop conformation and stem
conformation. Second, loop candidates are ob-
tained for modeling an unknown loop structure
(target loop) in an otherwise known protein struc-
ture. In this case, the selection is based on the
RMSDdist values of atoms of the stem residues with
a speci®c length n of the loop.

Calculation of loop properties

To establish relationships between the loop confor-
mation and other loop properties, we searched for
loops that are similar to the target loops. For each



Table 2. List of antibody hypervariable loops, taken from the set of Tramontano & Lesk (1992), that were analyzed in
this study

PDB Protein Loop no. Residues Loop no. Residues

1mcp Fab McPC603 2.70 AÊ L1 L26±L38 (13) H1 H26±H32 (7)
(mouse) L2 L55±L59 (5) H2 H53±H58 (6)

L3 L97±L102 (6) H3 H102±H110 (9)
1rei VL REI Bence-Jones 2.00 AÊ L1 26±32 (7) L3 91±96 (6)

(human) L2 49±53 (5)
2fb4 Fab KOL 1.90 AÊ L1 L25±L31 (9) H1 H26±H32 (7)

(human) L2 L48±L52 (5) H2 H52±H57 (6)
L3 L90±L97 (8) H3 H100±H106 (15)

2fbj Fab J539 1.95 AÊ L1 L26±L31 (6) H1 H26±H32 (7)
(mouse) L2 L48±L52 (5) H2 H52±H57 (6)

L3 L90±L95 (6) H3 H100±H106 (7)
2h¯ Fab HyHel-5 2.54 AÊ L1 L26±L31 (6) H1 H26±H32 (7)

(mouse) L2 L48±L52 (5) H2 H52±H57 (6)
L3 L90±L94 (5)

2rhe VL RHE Bence-Jones 1.60 AÊ L1 25±33 (9) L3 92±99 (8)
(human) L2 50±54 (5)

3fab Fab0 NEW 2.00 AÊ L1 L25±L31 (10) H1 H26±H32 (7)
(human) H2 H52±H56 (5)

L3 L90±L95 (6) H3 H98±H105 (8)
4fab Fab 4-4-20 2.70 AÊ L1 L26±L37 (12) H1 H26±H32 (7)

(mouse) L2 L54±L58 (5) H2 H53±H58 (6)
L3 L96±L101 (6) H3 H101±H106 (6)

The loop residues numbering is according to the PDB ®le, where L and H refer to light and heavy chains, respectively.
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target loop between 100 and 500 most similar tem-
plate loops from the structural database were col-
lected. This was done with the loop search
algorithm by using all Ca atoms in the target loop
to de®ne the interatomic distances. To arrive at the
required set of similar template loops, the RMSDdist

cutoff had to be chosen separately for each target
loop because different loops have different num-
bers of similar loops in the structural database. The
RMSDdist cutoffs ranged from 0.1 AÊ for loops of
four residues to 1.75 AÊ for loops of 16 residues.

A template loop that successfully passes the
RMSDdist cutoff and geometric criteria, was pro-
cessed further. The loop Ca atoms were superposed
on the known loop structure of the target protein,
using the method of Kabsch (1976). After superpo-
sition of the loop, the relative conformations of the
stems of the loop were compared. The Cartesian
root-mean-square deviation (RMSD) of the loop
mainchain atoms (N, Ca, C) was an indication of
the similarity between the target loop and template
loop, and was referred to as ``loop quality''. The
similarities and differences of the stem residues
after the superposition of the loop were examined
to determine the relation between the stem resi-
dues and the loop conformation. The following
comparisons were made. (1) RMSD of stem back-
bone atoms (N, Ca, C), where the stem length was
varied from one to three residues (on each side of
the loop). These values are called stem1, stem2,
and stem3, respectively. (2) The RMSDdist of dis-
tances between Ca atoms, or between Ca and Cb

atoms, of the stem residues. The length of the stem
was again varied from one to three residues. These
criteria are called CA1 (based on one distance),
CA3 (15 distances), CACB1 (four distances), and
CACB3 (60 distances).
The various ®ts were calculated by the linear least
squares method and by the robust linear ®tting al-
gorithm MEDFIT (Press et al., 1986). Since the re-
sults of the two methods were very similar, only
the linear least squares ®ts are shown here.

The stem1±3 values depend on the superposition
of the template loop and the target loop. Con-
sequently, they cannot be used for modeling
unknown loops and served only to examine corre-
lations between the loop and the stem. The
RMSDdist values are independent of a superposi-
tion of the template loop and target loop; i.e. they
depend only on the stem residues. The correlations
between the RMSDdist values and the loop quality
were used to develop parameter values for obtain-
ing a certain loop quality from a stem search.

The stem1±3 and RMSDdist values were correlated
with the loop qualities for every individual target
loop. A linear equation of the form:

P � a� b�Q �2�
was used with P the stem property measure, and
Q is the loop quality (in AÊ ). The signi®cance of the
correlations was measured by calculating the Pear-
son's linear correlation coef®cient R. Signi®cant
correlation would indicate that conformationally
similar loops are likely to have similar stem prop-
erties. The inverse (namely, that similar stem prop-
erties lead to similar loops), which is of primary
interest, would also be true.

To use the correlations of the different stem prop-
erties to extract stem parameters for predictive
loop searches, the best three template loops that
were found for each target loop were considered.
To avoid including corresponding loops of related
proteins, we only retained template loops from un-
related proteins here. From the best three template
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loops, we extracted the most restrictive (�smallest)
RMSDdist value, i.e. the one that would result in
the smallest total number of template loops from
the stem search. With these stem parameters we
should be able to ®nd at least one of the three best
possible loops in the database.

After collecting these parameter values for all indi-
vidual target loops, they were arranged by target
loop length. For every loop length, an average and
a worst-case (least restrictive parameter value for
that length) stem parameter was extracted. It is not
possible to guarantee that the chosen stem par-
ameter values are valid outside the speci®c set of
target loops. However, we believe that the target
set was large enough and contained a wide enough
variety of loop conformations to produce reliable
stem parameters; in particular, for loop lengths of
®ve to nine, there were at least 12 target loops (in-
cluding the antibody loops) in each set.

Use of energy functions

In a predictive loop modeling study, the various
loop candidates must be evaluated after they have
been selected from a database. This can be done
most directly by an energy-based criterion. In ad-
dition, it will usually be necessary to improve the
initial placement of the loop candidates by moving
them rigidly or allowing them to relax. This also
requires an energy related function, though not
necessarily the same one as used for the initial
evaluations; e.g. as in some protein-folding studies,
a relatively low resolution effective energy function
was used in the ®rst step and a more complete en-
ergy function in the second (Skolnick et al., 1993).
A prerequisite for a good energy function is that it
has a low energy value for the actual conformation
of the loop, relative to the other loop candidates se-
lected by the database search procedure. We tested
the performance of several energy functions by cal-
culating the non-bonded interaction energies be-
tween a set of selected template loops and the
protein framework. As described above, each of
the template loops was overlapped with the target
loop so as to minimize the RMSD for the backbone
atoms of the two loops.

In the interaction energy calculations, the ®rst stem
residue on both sides of the loop in the target pro-
tein framework was not included, since strongly
repulsive overlaps with the template loop may re-
sult for these residues, because the template loop
was ®tted to the target loop without optimization,
so that the loop might not ®t well with respect to
the stem residues of the protein framework.

Since the target loop rarely consists of the same
amino acids as the template loops, a set of energy
calculations were done including only the loop
mainchain and Cb atoms, whose positions are de-
termined by the mainchain. To include sidechains
in the energy evaluation, we used several reduced
sidechain models. The Levitt sidechain model has
the advantage of easy construction and fast energy
calculation (Levitt, 1976). In this model, the side-
chains are represented by a single sphere that is
placed at the position of the average centroid of
the sidechain; the latter is determined from main-
chain coordinates. The total interaction energy of
the template loop with the rest of the target protein
structure is assumed to consist of two parts: atom-
based interactions between all mainchain or Cb

atoms, and reduced sidechain interactions between
sidechains. The atom-based interaction was mod-
eled by a modi®ed non-bonded 9-6 potential, with
values for the well-depth e and equilibrium dis-
tance s, from the param19 parameter set of the
CHARMM program (Brooks et al., 1983). The cal-
culation was simpli®ed by using an average value
of e and s-values for all carbon (0.1077; 2.193), ni-
trogen (0.2384; 1.600) and oxygen (0.3208; 1.600)
atoms. The modi®ed pairwise 9-6 potential was:

E � " 2s9

r9
ÿ 3s6

r6

� �
for E < 10 kcal=mol �3�

and E � 10 kcal/mol if the calculated value was
larger. The limit on the maximum non-bonded
interaction energy allows atoms to move ``through
each other'', but the modi®ed energy function still
shows which template loops have bad contacts.
The Levitt sidechain energy function, which used
an 8-6 potential, was modi®ed in the same way.
The parameters used in the Levitt function were
taken from the original publication (Levitt, 1976).
In addition to the Levitt sidechain model, we used
the reduced sidechain models of Casari & Sippl
(1992), and of Gerber (1992). These models also
represent the sidechains by single spheres. The Ca-
sari/Sippl model puts the sidechain at the Cb pos-
ition, and the Gerber models puts it at the Ca

position.
Atom-based sidechain models were also used. The

backbone-dependent sidechain rotamer library of
Dunbrack & Karplus (1993) was employed. The
sidechains were built by using the most probable
w1/w2 pair for each residue as listed in the library.
Other w-angles of the sidechains were assumed to
be 180�. The sidechains in the remainder of the
protein were taken to have the position of the tar-
get structure. In the interaction energy calculations,
we varied the number of atoms of the template
loop sidechains (up to Cb, up to Cg, etc.), so as to
determine the optimal extent to which predicted
sidechain atoms should be included. Also we used
three different electrostatic functions: (1) no electro-
statics, (2) a dielectric constant (e) of 1 (vacuum),
and (3) a sigmoidal dielectric function, with e pro-
portional to 1.4 times the interatomic distance and
a switching function operating between 0 and 8 AÊ

distance (A. Blondel, personal communication).
Following the calculations of the interaction energy

between template loops and the target protein, we
determine the percentage of template loops with a
higher interaction energy than the loop of the crys-
tal structure. Ideally, this should be close to 100%.
In addition we evaluated the relation between the
three reduced sidechain models and the CHARMM
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all-atom model for the calculation of interaction en-
ergies. For this purpose, the interaction energies
between the individual sidechains in the target
loop and all non-loop sidechains in the target pro-
tein were calculated with CHARMM (param19
parameter set). In these calculations, the target
loop, as well as the rest of the protein, had the
crystal structure coordinates. The results for the
different reduced sidechain models were compared
on a residue-by-residue basis and expressed in the
form of cross-correlation coef®cients. Since in this
last calculation known loop conformations are
used, we were able to add one additional reduced
sidechain model (Crippen & Viswanadhan, 1985)
to gauge its performance with respect to the other
three models. In the Crippen/Viswanadhan model,
the spherical sidechain is placed at varying pos-
itions, which depend on the residue type. The
model is less suitable for modeling unknown
loops, because for some residue types sidechain
atom positions beyond Cb have to be known to
place the model sidechain.

All energy calculations were done on the initial set
of 45 full-length target loops (Table 1) and on the
40 antibody loops (Table 2).

Use of stem searches for loop selection

The objective of the loop search algorithm is to be
able to use it in predictive loop modeling studies.
In contrast to the searches described above, we
here assume that the target loop conformations are
unknown. Atoms from the stem residues are se-
lected to de®ne the target distance parameters
(RMSDdist). Both average and worst-case values are
used for the RMSDdist parameters. In each case, the
stem residues of the template loops are superposed
on the stems of the target loop, including only
the atoms that de®ne the RMSDdist parameter
used in the stem search. For CA1, only two atoms
are de®ned and the Cb atoms of the ®rst stem resi-
dues on either side of the loop were added to en-
able a unique ®t to be made. We also tried certain
additional superposition schemes, using all back-
bone atoms (N, Ca, C) of one to three stem residues
on each side of the loop.

By choosing the RMSDdist parameter and superpo-
sition scheme that yield the best initial placement
of the template loops, the subsequent task of opti-
mizing the loop orientation will be facilitated.
These searches, which are aimed to obtain the low-
est number of template loops and the best possible
initial orientations, are done for all 130 template
loops.

Above, we described energy functions that were
used for identifying and/or optimizing template
loop conformations. The ability of the modi®ed 9-6
potential (equation (3)) to ®nd the best possible
template loop orientation was gauged by means of
rigid body Monte Carlo (MC) optimization. After
initial placement of a given template loop by stem
superposition, it was rigidly reoriented via 50,000
MC steps at 5000 K. After 50,000 MC steps, the
lowest energy orientation for the template loop
was saved. Moves were accepted or rejected ac-
cording to the Metropolis criterion (Metropolis
et al., 1953). Random rotations were chosen from a
homogeneous distribution in the Euler angles f
(step taken from an interval: ÿ30�, 30�), cos y
(ÿ0.1, 0.1), and c (ÿ20�, 20�) (Allen & Tildesley,
1987). Translations (x, y, and z) were taken from a
homogeneous distribution between ÿ0.5 AÊ and
0.5 AÊ . Step sizes were divided by 2 if the accep-
tance ratio of a 5000 step window fell below 25%.

Since the modi®ed 9-6 potential contains only non-
bonded terms, additional bonded terms are needed
to keep the loop termini close to the anchor resi-
dues in the target protein. This was done by intro-
ducing pseudo-bonds and pseudo-angles between
Ca atoms of the loop and the ®rst anchor residues
of the target protein. The pseudo-bonds were be-
tween the ®rst and last Ca in the loop and their re-
spective neighbor Cas in the target protein. In a
similar fashion, pseudo-angles were de®ned. This
yields two pseudo-bonds and four pseudo-angles.
The bond angle potentials were represented by a
harmonic term, with minima and force constants
derived from a statistical analysis of 6499 coil resi-
dues in a 62-protein database (J.-M. Chandonia,
unpublished results). For Ca±Ca pseudo-bonds, an
average distance of 3.81 AÊ was found, with a stan-
dard deviation s of 0.43 AÊ . This translates into a
harmonic bond potential with the minimum at
3.81 AÊ and a force constant of 3.22 kcal/mol AÊ 2,
identifying s2 with kBT/K (kB � Boltzmann con-
stant, T � temperature, K � force constant). Analo-
gously, the Ca±Ca±Ca pseudo-angle harmonic
potential has a minimum at 109.9� and a force con-
stant of 6.21 kcal/mol rad2.

Optimization of the template loop orientation was
also done with the full CHARMM potential func-
tion. No additional energy terms are needed here,
since this potential function contains bond, angle,
dihedral, and improper dihedral terms (Brooks
et al., 1983). Optimizations were done by minimiz-
ation and by simulated annealing. During the op-
timizations, the rest of the protein was ®xed. A
strong harmonic dihedral constraint (500 kcal/mol -
rad2) was placed on all internal loop dihedral
angles to emulate rigid body motion of the loop.
No constraints were imposed on the ®rst and last
loop residue and on the stem residues neighboring
the loop. This allowed these residues to adjust the
bonds, angles, and dihedral angles that corre-
sponded to a bad geometry. After the initial place-
ment of the template loop, 2000 steps of Steepest
Descent (SD) minimization were done, and the
interaction energy between the loop and the target
protein was calculated. Since the CHARMM poten-
tial function does not have an energy maximum
like the modi®ed 9-6 potential (equation (3)),
atoms were unable to pass each other at close dis-
tance and a template loop could be trapped in an
unfavorable orientation. To avoid this, we allowed
all template loops with interaction energies of
1000 kcal/mol or more to search for a better orien-
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tation by rotating them in 12 steps of 30�, around
the Ca±Ca axis between the two residues bordering
the loop. The orientation with the lowest inter-
action energy was retained. After this extensive
minimization was done, consisting of another 2000
SD steps and 3000 Adopted-Basis Newton-Raph-
son (ABNR) steps (Brooks et al., 1983).

Rigid body MC optimization with the modi®ed 9-6
potential, and minimization and MD annealing
with the CHARMM potential were applied to ®ve
different target loops: 3sgb loop1 (®ve residues),
3app loop3 (nine), 2act loop1 (15), 1rei L3 (six),
and 4fab H3 (six). For 14 additional target loops
from four to nine residues in length, we used the
best protocol (i.e. minimization of the CHARMM
energy with dihedral constraints) to optimize the
selected set of template loops.

Results

The Results section is subdivided into three parts.
In the ®rst, we analyze the loop searches based on
the target loop mainchain conformations. We show
the correlations that were found between the tem-
plate loop quality and various stem properties. We
use the correlation results to evaluate parameter
values that can be used in stem searches so as to
include the best loop candidates in the database. In
the second, we investigate the ability of various en-
ergy functions to distinguish the correct loop from
the incorrect ones; here we are concerned with the
RMSD between target and template loops after the
best superposition. In the third we compare the re-
sults of stem searches with the different parameters
and determine the best one for predictive pur-
Table 3. Results for the linear ®ts of the stem1, stem2, and s

stem1
n No. hbi � hR2i � hbi
4 3 7.06 0.31 0.85 0.02 7.66
5 11 5.30 2.40 0.58 0.20 5.90
6 8 3.55 1.01 0.50 0.24 3.57
7 19 3.33 1.50 0.39 0.27 3.60
8 9 2.33 1.34 0.31 0.20 2.38
9 12 3.11 0.98 0.39 0.15 3.30

10 5 2.54 0.86 0.28 0.15 2.69
11 5 3.04 0.72 0.33 0.09 3.03
12 1 4.05 0.59 4.65
13 4 2.39 1.23 0.19 0.13 2.45
14 5 2.55 0.36 0.26 0.08 2.57
15 3 3.81 0.21 0.36 0.06 3.88
16 5 2.20 0.74 0.19 0.14 2.03

5 9 5.18 0.27 0.80 0.20 6.70
6 13 5.49 2.33 0.49 0.22 6.48
7 8 4.57 1.06 0.46 0.11 5.90
8 3 2.26 1.03 0.33 0.20 2.50
9 3 4.79 1.38 0.54 0.02 5.78

10 1 5.23 0.77 6.05
12 1 1.10 0.06 0.34
13 1 2.91 0.28 3.82
15 1 1.63 0.17 2.49

The columns labeled n and No. contain the number of residues in
respectively. The top part of the Table, with n ranging from 4 to 16
5 to 15) to the antibody loops. For each parameter, the average (h i)
poses. To test the possibility of re®ning the initial
orientations, we use the energy functions to opti-
mize the spatial position of the template loops in
the protein for 19 target loops in the ®nal section.

Correlations between loop quality and
stem properties

We ®rst examined the correlation between loop
quality and different stem lengths between one
and three residues (see below). Table 3 lists the b
and R2 values of the linear ®ts (equation (2)) for
stem1, stem2 and stem3, averaged for each loop
length. The a values, which represent the intersec-
tion of the ®tted line with the y-axis, are highly
variable and range between ÿ5.0 and 5.0. The
linear correlations of the loop quality for all three
stem lengths are very similar; i.e. there is no indi-
cation that use of a longer stem gives better corre-
lation with loop quality. The fact that all b
coef®cients (with one exception) have positive va-
lues con®rms that more similar loops have more
similar stem residues. The R2 values show that the
correlation between the loop quality and the stem
parameters is strongest for shorter loops and de-
creases signi®cantly with loop length. This agrees
with the fact that shorter loops, which have fewer
degrees of freedom, are more restricted by their
stem conformations (Summers & Karplus, 1990).
The antibody loops display no better correlations
between loop quality and stem properties, as can
be judged from the R2 values of corresponding
loop lengths (Table 3).

To provide some details concerning the variability
of the loop/stem correlation, Figure 1 shows the
tem3 parameters to the loop quality

stem2 stem3
� hR2i � hbi � hR2i �

0.95 0.63 0.08 8.47 1.66 0.49 0.12
2.98 0.47 0.17 6.27 3.45 0.38 0.18
1.27 0.39 0.22 3.50 1.65 0.31 0.19
1.73 0.32 0.21 3.76 2.05 0.24 0.16
1.74 0.28 0.17 2.42 1.99 0.25 0.17
1.16 0.31 0.14 3.41 1.29 0.26 0.13
1.17 0.23 0.13 2.95 1.45 0.20 0.11
0.92 0.25 0.09 3.03 1.34 0.21 0.11

0.54 5.35 0.49
1.34 0.15 0.10 2.45 1.40 0.13 0.09
0.42 0.21 0.10 2.39 0.60 0.17 0.11
0.45 0.33 0.04 3.62 0.64 0.24 0.07
0.85 0.14 0.14 1.99 0.82 0.12 0.13

0.35 0.80 0.19 7.39 0.49 0.71 0.20
3.05 0.43 0.23 7.61 3.70 0.40 0.21
1.58 0.40 0.10 7.18 2.01 0.39 0.09
1.18 0.23 0.14 3.04 1.66 0.20 0.13
2.04 0.47 0.07 6.72 2.61 0.43 0.09

0.64 6.95 0.59
0.00 ÿ0.47 0.00
0.22 5.16 0.23
0.21 3.00 0.18

the target loop, and the number of target loops with that length,
, corresponds to all non-antibody loops, the bottom part (n from
b and R2 and their respective RMSD values (�) are listed.



Figure 1. a, Linear parameter b (equation (2)) of the correlation between template loop quality (RMSD in AÊ ) and the
stem1 parameter. Every point represents the complete search for a particular target loop. Antibody loops are indi-
cated by open symbols. b, Squares of Pearson's correlation coef®cient (R2), indicating the signi®cance of the linear
correlation.
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results for the linear ®t of stem1 to the loop quality
for all 130 target loops, arranged by loop length;
open symbols indicate antibody loops. The b coef®-
cients vary between approximately 0 and 9 and the
R2 values displayed a large variation. As examples
(Figure 2), the template loops found for target loop
L2 of the 2fbj antibody (length ®ve residues)
clearly have a much better correlation between the
loop quality and the stem1 parameter than 3grs
loop1 (seven residues). However, in the case of the
L2 loop of the 2fbj antibody, the set of most similar
template loops are all from related proteins (i.e.
other antibodies).

To illustrate the important differences between the
results of template loop searches the Ca traces of
the ten highest quality template loops are shown
for two different target loops (Figures 3 and 4). In
Figure 3, we show target loop 3fab L3, together
with the ten best unrelated template loops. In this
case, the spread in stem3 values is 1.58 to 4.31 AÊ .
For 3grs loop3 the RMSD of the loop mainchain it-
self is in a comparable range (0.27 to 0.40 AÊ for
3grs loop3 versus 0.34 to 0.39 AÊ 3fab L3), but the
Figure 2. a, All template loops for the 2fbj L2 loop (®ve re
plate loop is plotted versus its loop quality. Circles represen
are loops from related proteins. b, As a, but for the 3grs loop
range of stem3 values is much larger (5.34 to
10.39 AÊ ; Figure 4). Together with the highly vari-
able correlations discussed before, these ®gures in-
dicate that the success of loop modeling by
database screening methods is likely to depend on
the particular loop being modeled. The possibility
of selecting the best of the resulting loops by
means of various energy functions is discussed
below.

Correlations between the loop quality and the
RMSDdist parameters CA1, CA3, CACB1, CACB3
(see earlier) are important, since these parameters
are independent of the superposition of template
loops on the target loop, and can therefore be used
in predictive stem searches. Table 6 lists the results
of the linear ®ts for these parameters. As for stem
correlation, a large spread in the values exists
within the set of target loops. Overall, the R2 va-
lues are somewhat lower than those for the stem
correlations. No signi®cant difference is found be-
tween the parameters CA1, CA3, CACB1, and
CACB3. On the basis of these results it makes no
difference which RMSDdist is used in a stem search
sidues) target loop search. The stem1 value of every tem-
t template loops from unrelated proteins, cross symbols
1 (seven residues) loop search.



Figure 3. Wall-eyed stereo drawing of a short loop (six
residues) with a relatively low spread in stem3 par-
ameter. The ten best template loops (Ca-traces only)
found for 3fab L3 (residues 90 to 95) are drawn with
small grey atoms, and the target loop with large black
atoms. The Ca atoms of the ®rst and last residue in the
target loop are labeled. The mainchain RMSD of these
template loops ranges from 0.34 AÊ to 0.39 AÊ .
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when modeling an unknown loop. Overall trends
once more indicate stronger correlations for shorter
loops, and a b coef®cient that is positive except for
two sets of antibody loops. The a values are be-
tween ÿ1.0 and 1.0.

These results indicate, together with those of
stem1-3, that the degree of conformations simi-
larity of the stem residues is only weakly corre-
lated with the similarity of the loop conformation.
This is to be expected for long loops, which have
more conformational space available, and are
therefore less dependent on the stem residue pos-
itions than short loops. Although the correlations
are higher for short loops (as measured by the R2

values), stem similarity alone is still not a reliable
®lter for extracting high quality loops. Generally,
the template loop quality range was much smaller
for short loops, because there are many more simi-
lar template loops present and we limited our-
selves to extracting only a few hundred. This small
loop quality range in turn leads to the relatively
high b values for the short loops (Tables 3 and 4).
Figure 4. Example of a short loop with a high stem3 para
chain RMSD of these template loops ranges from 0.27 AÊ to
The often low R2 values of the loop-stem corre-
lations mean that although there is a statistically
relevant correlation, a similarity in the stem region
does not imply a similarity of the loop confor-
mation for any particular template loop. Most
often the template loops with the most similar
stems do not have the highest loop quality, and
vice versa.

Antibody loops

Hypervariable loops of antibodies have been exten-
sively modeled by different methods (Fine et al.,
1986; Bruccoleri et al., 1988; Tramontano & Lesk,
1992; Tanner et al., 1992; Zheng et al., 1993b). The
existence of canonical structures for these anti-
body loops (other than H3) greatly facilitates the
modeling if PDB-based methods are employed.
Using the concept of canonical structures, Chothia
et al. (1989) were able to get very good loop pre-
dictions for the internal structure of 19 antibody
loops (i.e. 15 out of 19 mainchains with
RMSD < 1 AÊ , after superposition of loops). The
orientations of these loops after superposition of
the framework residues was signi®cantly worse.
Differences in Ca positions between predicted
and observed structures ranged from 0.4 AÊ to
3.5 AÊ .

For all 40 antibody loops, we plotted the loop
qualities for the ten best template loops found
(Figure 5). The loops are sorted with respect
to loop name (L1, L2, etc.) on the x-axis.
The � symbols indicate the results for searches
with the extended PDB database, including all
available antibody structures. The circles represent
the ten best loops from unrelated proteins only.
A � symbol in a circle represents an unrelated tem-
plate loop that belongs to one of the ten best loops
even if the extended database is used. Especially
for the L1, L2, and H1 loops, the best template
loops are clearly found in other antibody struc-
tures, virtually always in canonically related loops.
There are a few exceptions, e.g. 1mcp L1 (13 resi-
dues), and 2h¯ L1 (six residues), for which tem-
plate loops from unrelated proteins are equally
good. For the two other loops with canonical struc-
tures, L3 and H2, unrelated proteins deliver the
majority of the ten best template loops, in about
meter spread (3grs loop 3, residue 301 to 306). The main-
0.40 AÊ .



Table 4. Results for the linear ®ts of the stem parameters CA1, CA3, CACB1, and CACB3, to the loop quality

CA1 CA3 CACB1 CACB3
n No. hbi hR2i � hbi hR2i � hbi hR2i � hbi hR2i �
4 3 2.10 0.49 0.26 4.43 0.32 0.21 2.34 0.47 0.24 4.68 0.34 0.21
5 11 0.91 0.31 0.25 1.55 0.17 0.18 0.07 0.30 0.24 1.58 0.17 0.18
6 8 0.52 0.29 0.21 1.31 0.17 0.12 0.55 0.30 0.17 1.35 0.18 0.11
7 19 0.14 0.11 0.16 0.45 0.11 0.13 0.13 0.11 0.13 0.44 0.11 0.13
8 9 0.32 0.17 0.17 0.80 0.11 0.13 0.32 0.17 0.16 0.81 0.12 0.14
9 12 0.29 0.11 0.07 0.54 0.05 0.04 0.29 0.11 0.08 0.57 0.06 0.05

10 5 0.26 0.10 0.07 0.69 0.06 0.06 0.23 0.09 0.06 0.64 0.06 0.05
11 5 0.31 0.09 0.12 0.83 0.07 0.08 0.30 0.08 0.10 0.80 0.07 0.08
12 1 0.36 0.14 1.11 0.12 0.39 0.14 1.10 0.12
13 4 0.28 0.04 0.03 0.79 0.05 0.03 0.28 0.04 0.02 0.77 0.05 0.03
14 5 0.22 0.04 0.03 0.79 0.07 0.04 0.23 0.04 0.03 0.77 0.07 0.04
15 3 0.24 0.06 0.05 0.47 0.06 0.06 0.26 0.05 0.04 0.45 0.06 0.06
16 5 0.09 0.03 0.05 0.23 0.02 0.02 0.07 0.02 0.04 0.21 0.02 0.02

5 9 0.74 0.49 0.18 2.30 0.39 0.16 0.66 0.42 0.15 2.28 0.41 0.16
6 13 0.78 0.23 0.15 3.59 0.22 0.14 0.85 0.22 0.16 3.59 0.23 0.15
7 8 0.15 0.05 0.06 0.54 0.07 0.07 0.25 0.06 0.06 0.66 0.07 0.07
8 3 0.15 0.04 0.01 0.89 0.08 0.00 0.12 0.03 0.01 0.87 0.08 0.00
9 3 0.33 0.10 0.00 1.11 0.06 0.04 0.42 0.10 0.07 1.18 0.07 0.05

10 1 0.63 0.21 1.70 0.18 0.76 0.23 1.89 0.21
12 1 0.25 0.04 0.82 0.07 0.31 0.04 1.00 0.10
13 1 ÿ0.11 0.01 0.34 0.01 ÿ0.09 0.00 0.45 0.02
15 1 0.15 0.07 0.69 0.06 0.16 0.10 0.67 0.07

Columns are set up as in Table 3. RMSD values (�) correspond to the R 2 averages.

PDB-based Protein Loop Prediction 985
50% of the cases (see e.g. 2fb4 L3, 3fab H2, 4fab
H2). For the H3 loop, which has not been found to
have canonical structures, there is almost no im-
provement in the loop quality of the template
loops when the extended database is used.

Determination of stem search parameter

To visualize the overall trends and completeness of
the database, we plotted, for all target loops, the
loop quality of the ten best-®tting template loops
(Figure 6); only template loops from unrelated pro-
teins were included. Between target loops of the
same length, there are large variations in the best-
®tting template loops. For instance, for 3app loop2
(nine residues), none of the template loops is better
than 1.2 AÊ , whereas for 3grs loop4 (nine residues),
there are ten unrelated template loops with a loop
quality of 0.4 AÊ or better. In this case, the result is
due to the fact that a large part of the 3grs loop
has an anti-parallel b-strand character, whereas the
3app loop has an overall coil-like conformation.
We found that for loops of up to and including
eight residues, it makes little difference whether
proteins related to the target protein are included
in the database or not; i.e. the unrelated proteins
Figure 5. For all antibody loop
searches, the best template loops
with highest quality are shown.
Cross symbols represent template
loops from a database with related
and unrelated proteins, and circles
from a database of unrelated pro-
teins only. The names and lengths
of the different target loops are
shown on the X-ordinate.



Figure 6. For all 130 target loop
searches, the ten best template
loops of proteins unrelated to the
target protein are shown. Results
are sorted according to target loop
length. Every column represents
one target loop. Open and ®lled
circles are alternated between
different loop lengths for clarity.
All template loops below the hori-
zontal line have an RMSD to the
target loop of less than 1 AÊ . The
results for two particular target
loops are indicated by vertical bro-
ken lines: 3grs loop4 (left) and
3app loop2 (right).

986 PDB-based Protein Loop Prediction
contain loops that are as similar as those found in
related proteins. Longer loops show a signi®cant
difference though it is still not very large; e.g. for
loops of length 15, the worst case values are 2.07 AÊ

and 2.45 AÊ for all cases and only unrelated pro-
teins, respectively.

Figure 6 shows that one cannot expect to ®nd tem-
plate loops with a loop quality better than 1.0 AÊ

RMSD for loops of more than nine residues in the
available database. Also, there are large variations
in best-®tting template loops for target loops of the
same length. In the set of 11 loops reported by Fi-
delis et al. (1994), they ®nd average loop qualities
of 0.49 AÊ , 0.58 AÊ , and 0.59 AÊ , for loops of seven,
eight, and nine residues, respectively. Correspond-
ing worst-case (highest value for particular loop
length) loop qualities were 0.84 AÊ , 0.88 AÊ , and
0.59 AÊ , respectively. Although they used the
RMSD based on Ca-atoms only and we include all
mainchain atoms, their average loop qualities are
very similar to the ones reported here. However,
we ®nd higher worst-case values, most probably
because of the larger number of target loops that
was analyzed. This illustrates the major weakness
of the PDB-based search method, which is that it is
incomplete for longer loops.

From the results of the target loop searches we ex-
tracted average and worst-case parameter values
(for each loop length) of CA1, CA3, CACB1, and
CACB3, for use in stem searches; i.e. the RMSDdist

values that must be allowed to obtain at least one
of the three best possible template loops from unre-
lated proteins. The resulting RMSDdist search par-
ameters display large differences between the
average and worst-case values (Table 5). In the
case of an unknown loop, a worst-case scenario
has to be assumed, to make sure that one of the
three best possibilities will be in the template loop
set. The use of worst-case values means that many
more template loops have to be processed, com-
pared to a search with average parameter values.
If average values are used, one of the three best
loops would not be obtained in 37% of the cases,
with no apparent dependence on loop length.
There does not seem to be a signi®cant increase in
any of the four search parameter values with in-
creasing loop length, especially for the average va-
lues. This suggests that the division by 2n (where
n � number of residues in the loop) in the calcu-
lation of the RMSDdist values (equation (1)) re-
moves, in an approximate sense, the dependency
on loop length. There are certain loop lengths
where one parameter gives signi®cantly tighter
limits, particularly for the worst case values. This
is true for loops of length 7 and 11 for which
CACB1 is better and for loops of length 13 and 14
for which CACB3 is better. This is most likely a re-
¯ection of the limited number of target loops. In-
stead of restricting the parameters to ®nding one
of the best three loops, more relaxed criteria could
have been speci®ed. The resulting parameters
would be more restrictive in the stem searches
when modeling unknown loops. However, this is
not likely to be useful because many target loops
have only a few (<®ve) good-®tting template
loops, while the remaining template loops in the
top ten are much worse (Figure 6).

Energy based loop evaluation

It has been found that when template loops are ex-
tracted from the PDB by a stem search and ®tted
on the corresponding stems of the target protein,
their initial orientations are not necessarily optimal
(Tramontano & Lesk, 1992, Fidelis et al., 1994). This
in accord with the weak correlation between the
loop and stem conformations (e.g. see Figure 1 and
Table 3). Energy functions can be used to evaluate



Table 5. Worst-case (worst) and average (aver.) RMSDdist values in AÊ , sorted by loop length n (in residues)

CA1 CA3 CACB1 CACB3
n Worst Aver. Worst Aver. Worst Aver. Worst Aver.

4 0.26 0.16 0.48 0.31 0.21 0.13 0.26 0.18
5 0.53 0.13 0.91 0.41 0.29 0.10 0.47 0.24
6 0.52 0.17 0.83 0.31 0.35 0.13 0.35 0.19
7 0.67 0.18 1.43 0.45 0.30 0.12 0.73 0.25
8 0.88 0.22 0.91 0.40 0.43 0.15 0.46 0.23
9 0.74 0.19 0.82 0.42 0.30 0.11 0.44 0.24

10 0.51 0.29 0.61 0.40 0.38 0.22 0.35 0.24
11 0.44 0.22 1.21 0.55 0.22 0.13 0.61 0.30
12 0.38 0.20 0.58 0.55 0.29 0.25 0.31 0.29
13 1.17 0.55 0.77 0.41 0.65 0.35 0.43 0.27
14 1.22 0.53 0.87 0.42 0.73 0.33 0.47 0.23
15 0.35 0.20 0.60 0.43 0.15 0.12 0.30 0.24
16 0.64 0.23 0.52 0.35 0.32 0.14 0.29 0.22
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and re®ne the initial orientations. In this subsec-
tion, we calculate the interaction energies with the
rest of the protein of all template loops that were
found in the loop searches and determine how
well these energies correlate with the similarity in
the internal geometry (``quality'') of the template
loop to the known target loop. As above, the tem-
plate loops are superposed on the target loop prior
to evaluation. The main objective of this section is
to determine how well the energy function can
identify native loop conformations.

Scatter plots of the modi®ed 9-6 energy and Levitt
sidechain energy versus template loop quality were
made, similar to those in Figure 2. Varying degrees
of correlation were observed. For example, the cor-
relation of the energy versus loop quality for 3fab
loop H1 (seven residues), is much better than that
for 3fab loop H3 (eight residues; Figure 7). In gen-
eral, the correlations with addition of the Levitt
sidechain energy were worse than those for the 9-6
energy alone. Identical results were found when
the unmodi®ed Levitt potential was added.

Since the Levitt sidechain energy did not correlate
well with the loop quality, we investigated the per-
formance of other methods for representing the
sidechains of the template loops. These methods
included two additional reduced sidechain models,
Figure 7. a, All template loops for the 3fab H1 (seven re
the loop quality. Circles represent loops from unrelated pro
b, As a, for the 3fab H3 (eight residues) target loop search.
and all-atom sidechain representations, where the
atom positions are determined by using a rotamer
library. First we check how well we can do with
the 9-6 energy by itself, which only contains
mainchain and Cb atoms for the template loops.
This energy is very good at singling out the correct
loop for target loops of ten residues and up, where
the percentage of template loops with energies
lower than the correct loop is about 1% (Figure 8a).
Every dot represents the result for a given target
loop search. A total of 90 searches were done, cor-
responding to the target loops of Table 1, full
length, and reduced by two residues. Since all loop
searches resulted in �200 to 400 template loops,
these results mean that there are usually less than
®ve template loops with 9-6 energies lower than
that of the crystal structure. The 9-6 energy is less
speci®c for loops with nine residues or less. In two
cases, nearly 40% of the template loops have a
lower energy. The poorer performance for the
shorter loops can be explained by the fact that for
these short loops the set of template loops is con-
formationally much more similar to the actual
loop. For longer loops, the differences are greater
and template loops are more likely to have large
steric clashes with the rest of the target protein.
Figure 8b presents the results of these calculations
sidues) target loop search. The 9-6 energy is plotted versus
teins, cross symbols represent loops from related proteins.



Figure 8. a, The rank of the 9-6 energy (equation (3)) of the target loop itself, among all template loops found, versus
the length of the target loop. The template loops are selected by the search to be similar to the target loop, and are
superposed on the target loop. Because at small loop lengths, many template loops are very similar to the target
loop, the absolute energy differences are very small, which accounts somewhat for the low scoring loops. b, Corre-
sponding ranks for sidechain-sidechain interaction energies calculated by the Levitt (1976) model.
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for the reduced sidechain model of Levitt (1976).
There seems to be virtually no discrimination be-
tween the correct loop and the set of template loop
conformations, even for the longer loops. Corre-
sponding plots for the other reduced sidechain
models were qualitatively similar. This indicates
that none of the reduced sidechain models can be
of signi®cant use in the selection or optimization of
the loop orientations.

The energy calculations for the all-atom sidechain
representations were done with the CHARMM
program (Brooks et al., 1983) with some alternative
choices for the electrostatic part of the interaction
energy. When we included only the mainchain
atoms (no Cb atoms), the energy function was
often unable to single out the correct loop, expe-
cially for loops of nine residues or less (Figure 9a).
It is clear that the electrostatic part of the energy
plays a signi®cant role, since changing the dielec-
tric function from vacuum (®lled symbols) to the
sigmoidal distance-dependent function (open cir-
cles), improved the results signi®cantly. Comple-
Figure 9. As Figure 8, for atom-based interaction energies c
atoms (N, Ca, C, O) are included. Filled circles correspond
distance-dependent dielectric. b, Mainchain and Cb atoms ar
tely turning off the electrostatics and including Cb

atoms proved to be the best method, and the
CHARMM non-bonded energy function was able
to distinguish well between the crystal structure
loop and the template loops (Figure 9b). The ability
to identify the crystal structure loop from a set of
template loops does not guarantee that the non-
bonded energy function is also able to select the
best template loop. In many cases, the lowest en-
ergy template loops do not have the lowest RMSD,
and vice versa.

There is a slight improvement in results of the
CHARMM energy of mainchain plus Cb over the
9-6 energy (cf Figures 8a and 9b). Since the same
sets of atoms are included, and no electrostatics are
used, the difference is caused by the fact that the
CHARMM potential is more repulsive at short in-
teratomic distances (12-6 versus 9-6 potential form
with no modi®cation at short distances (equation
(3)), and that the CHARMM potential has more
variation in atomic radii (e.g. the carbonyl carbon
has a different radius from the aliphatic carbon).
alculated with the CHARMM potential. a, Only mainchain
to the vacuum calculation, open circles to the sigmoidal
e included, no electrostatics.



Figure 10. Individual target loop sidechain interaction energies with all other non-loop sidechains in the target pro-
tein, for the 2act loop2 (16 residues) target loop. The atom-based CHARMM energies (continuous lines) are plotted
together with model sidechain energies (broken lines). a and b show results for the Levitt (1976) and Crippen/
Viswanadhan (1985) models, respectively.
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To include more of the sidechain, we used the rota-
mer library of Dunbrack & Karplus (1993). We
compared these results with those obtained with
the w-angles of the crystal structure. When adding
the sidechain atoms that are uniquely determined
by the w1 angle, the results get worse and they
deteriorate even more when atoms de®ned by the
w2-angle are also added (results not shown). This
suggests that it is better not to use the rotamer li-
braries at the loop orientation/optimization stage,
and only to add the Cb atoms to the mainchain.
The results did improve when using the crystal
structure w-angles to place the atoms further down
the sidechain. When all sidechain atoms de®ned
by w1 and w2-angles are included from the crystal
structure, all crystal structure loops correspond to
the best 5% (or less) of all template loops found
in their respective searches (except one seven-resi-
due target loop, which falls in the best 20%).
This indicates that more accurate sidechain pre-
diction algorithms are needed before the side-
chain energies can be used. The sensitivity of the
results to wrong sidechain conformation is caused
by the hard sphere-like behavior of the
CHARMM non-bonded potential at short dis-
tances. Short energy minimizations (50 steps SD)
Table 6. Coef®cients of cross-correlation be
lated with the CHARMM potential energy
chain models

CHMa Levitt

CHM 0.545 ÿ0.079
CHMa ÿ0.052
Levitt
Casari
Crippen

CHARMM calculations were done without elec
dependent dielectric (CHMa) (see Theory and Alg
x and y is de®ned as:

hxyi ÿ h����������������������
hx2i ÿ hxi2

p
�

where h i denotes average value.
reduce this problem somewhat, but the results
did not change signi®cantly.

To investigate further the failure of the reduced
sidechain models (e.g. Figure 8b), we made a direct
comparison of the results from these models with
the atom-based CHARMM potential. The models
included the one by Levitt (1976), the potential
function by Crippen & Viswanadhan (1985), the
linearized hydrophobic potential by Casari & Sippl
(1992), and the sidechain contact energy model by
Gerber (1992). We compared the different energy
values for the target loop whose structure is
known and can therefore calculate all sidechain
interaction energies. All interaction energies be-
tween individual sidechains of target loop residues
with the non-loop sidechains of the target protein
were calculated and compared. In particular, the
CHARMM interaction energies of individual loop
residues (all sidechain heavy atoms) were com-
pared with the energies from the four different
models, for all target loops of Tables 1 and 2 (a
total of 85 loops). The results for target loop 2act
loop2 (15 residues) highlight the differences in per-
formance of the sidechain potential (Figure 10).
The Levitt energies (Figure 10a) appear to be
slightly anti-correlated with the CHARMM energy.
tween residue interaction energies, calcu-
function, and four different reduced side-

Casari Crippen Gerber

ÿ0.117 0.328 ÿ0.052
ÿ0.157 0.377 ÿ0.034
ÿ0.042 ÿ0.111 ÿ0.005

ÿ0.008 0.042
ÿ0.052

trostatics (CHM) and with a sigmoidal distance-
orithms). The cross-correlation between variables

xihyi����������������������
hy2i ÿ hyi2

q ;
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This is most pronounced for sidechains that have a
favorable CHARMM energy. The Crippen/Viswa-
nadhan (Figure 10b) energies are better correlated
with the CHARMM energies, and agree in most
cases for the favorably interacting residues. Cross-
correlations between CHARMM and sidechain
model interaction energies were calculated, based
on 706 individual sidechains from the target loops.
Of the four different sidechain models, only the
Crippen/Viswanadhan model correlates positively
with the CHARMM energy (Table 6). The Levitt
and Gerber energies have a near-zero correlation
coef®cient, and the Casari/Sippl energy is slightly
anticorrelated with a coef®cient of ÿ0.12. Only
minor changes occurred with a sigmoidal distance-
dependent e was used for the CHARMM energy,
instead of no electrostatics term.

Cross-correlations between the different reduced
sidechain models have coef®cients close to zero
(Table 6). In some cases this is surprising; e.g. the
Casari/Sippl and Crippen/Viswanadhan energy
functions are both derived from a statistical analy-
sis of a set of proteins with known conformations.
This suggests that these reduced sidechain poten-
tials, which seem to work for identifying the native
fold of a given sequence among a number of
alternative protein folds (Casari & Sippl, 1992),
miss speci®c details of the important interactions.
They clearly are unreliable for predicting the con-
formation of a small segment, such as the loops of
interest here.

Thus, the only energy functions that are useful in
identifying the target loop conformation are the 9-6
and CHARMM potential, with the mainchain and
Cb atoms of the template loop included. In many
cases these energy functions are able to select the
target loop structure from a set of very similar
superposed template loops.

Loop selection and orientation based on
stem criteria

Stem searches represent the true test for effective-
ness of the PDB-based loop search method, since
they correspond to real predictions of the best tem-
plate loop candidates making use of the anchor re-
sidue coordinates and the target loop sequence.
We now examine the performance of the loop
search algorithm with the parameters extracted
above by doing searches for the 130 target loops.
For each target loop, a search was done using the
four different RMSDdist parameters CA1, CA3,
CACB1, and CACB3; the values used are given in
Table 5. After the stem search, the template loop
stems were ®tted on the target frame by a least
squares algorithm. Several schemes for superpos-
ing the stems were used, differing in the atoms in-
cluded in the least squares ®t.

An important question concerns the choice of
RMSDdist parameter (CA1, CA3, CACB1 or
CACB3). There are two issues: the number of loops
that have to be included and the quality of the re-
sulting templates. By using the worst-case par-
ameter values displayed in Table 5, we know that
the search will have at least one of the three best
possible loops in its resulting set of template loops.
We expect the same to hold more generally (for
target loops outside this set of 130), especially for
the loop lengths for which we used a large number
of target loops (loop lengths ®ve to nine all have
12 or more target loops). The total number of tem-
plate loops found should be as small as possible to
facilitate subsequent processing.

Using the worst-case RMSDdist parameter values of
Table 5, we found a larger number of template
loops for the parameters that are based on three
stem residues on either side (CA3 and CACB3)
compared to those with one residue on either side
(CA1 and CACB1). The average number of tem-
plate loops for CA1 and CACB1 was between 500
and 3000, with no apparent dependency on loop
length. The numbers of loops are the ones obtained
after the geometry check, which discards roughly
50% of the template loops in all searches. For CA3
and CACB3, the average number was usually lar-
ger, especially for loop lengths of seven (�7000
templates) and 11 (�4000 templates). For loop
length 11 this is caused by one ``bad'' target loop
(3est loop3), but for loop length seven there are
several target loops that contributed high CA3 and
CACB3 parameter values. When the average
search parameters are used instead of the worst-
case values, there is essentially no difference be-
tween the different parameters, and the number of
templates ranged from 200 to 1500. Searches with
average parameter values, however, are not guar-
anteed to give you at least one out of the best three
template loops.

A second criterion for determining the best search
parameter is the distribution of template loop qual-
ities after the initial superposition of the stem resi-
dues. Because of the large variability in stem
residue conformation for similar loop confor-
mations (see Figure 1 and Table 3), it is very likely
that a least squares superposition of stem residue
atoms should be followed by further optimization.
Obviously, in any such optimization it is best to
start with an orientation that is close to the opti-
mum from the initial placement. For all target loop
lengths, we calculated the percentage of target
loops for which the initial stem superposition re-
sulted in at least one template loop with a main-
chain RMSD of less than 1 AÊ , 1.5 AÊ , 2 AÊ , and 3 AÊ .

The reported searches were done with the worst-
case CACB1 stem search parameters. Template
loops from related proteins with the same sequence
as the target loop were not included. For non-anti-
body loops, the probabilities of obtaining initial
loop orientations with RMSD less than 1 AÊ is more
than 50% only for lengths of four to six residues.
For target loops of ten residues or more, we only
®nd good initial orientations if related template
loops are included. These related template loops
are corresponding loops from related proteins. For
the antibody loops, there is a much stronger in¯u-
ence of including related template loops; this sup-



Figure 11. Cumulative initial RMSD distribution for all ®ve-residue target loop stem searches with the worst-case
CACB1 parameter. Related and unrelated template loops are included. a, For non-antibody target loops, different
ways of ®tting the stems are compared: using mainchain atoms of ®rst (thick continuous line with vertical bars indi-
cating the standard deviations), the ®rst and second (medium), and the ®rst three anchor residues (thin). The fourth
®tting method included the Ca and Cb atoms of the ®rst anchor residues (broken line). b, Comparison of the results
for non-antibody target loops (continuous line) and antibody loops (broken) using the CACB1 parameter, and the
results for non-antibody loops using the CACB3 parameter (short broken). In all cases, the mainchain atoms of the
®rst anchor residues were ®tted.
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ports the concept of the existence of canonical
structures. If they are included, we ®nd initial loop
RMSD values of less than 1 AÊ in more than 50% of
the cases for lengths up to nine residues. Interest-
ingly, for the three antibody target loops of eight
residues, no canonically related loops were present
in the database, but in two of the three cases unre-
lated template loops existed that resulted in an
RMSD of less than 1 AÊ . In the stem superpositions,
the mainchain atoms (N, Ca, C) of the ®rst stem re-
sidues were used in the least squares ®t, since this
resulted in the best initial orientations.

Normalized initial cumulative distributions of loop
RMSD values (in AÊ ) for a loop length of ®ve resi-
dues are plotted in Figure 11. Figure 11a shows the
differences in initial RMSD values for non-anti-
body loops between four different ways of ®tting
the stems, using the mainchain atoms (N, Ca, C) of
the ®rst (thick line), the ®rst and second (medium),
and the ®rst three anchor residues (thin), respect-
ively. A fourth method uses only the atoms that
de®ned the RMSDdist parameter, here Ca and Cb of
the ®rst stem residues (broken line). The results
suggest that the best initial loop RMSD is obtained
when the mainchain atoms of only the ®rst stem
residues are included in the least squares ®t.

There seems to be no difference in initial loop
RMSD between the antibody target loops
(Figure 11b, broken line) and non-antibody target
loops (continuous line). Up to an RMSD of 1.2 AÊ ,
they have similar initial distributions, even though
the antibody searches were done with the extended
database that included antibody structures. As it
was shown that for non-antibody loops of four to
six residues the initial orientation was often good,
it is likely that the real advantages of the existence
of canonical structures for antibodies become ap-
parent for loops of more than six residues.
Results for the CA1 and CA3 parameters are vir-
tually identical to those for CACB1 and CACB3,
respectively. Although the average reduction of
number of template loops by the geometry check is
about 50%, its effect on the normalized distribution
is negligible. There are subtle differences between
the results for the four different parameters. For
the loop length of ®ve, as well as for lengths of
four, six, and seven residues, the fraction of loops
with a loop quality of better than 2 AÊ is higher for
the searches with one stem residue (CA1, CACB1),
than for the searches with three stem residues
(CA3, CACB3). This is a direct result of the larger
total number of template loops found for the CA3
and CACB3 parameters discussed before. Both the
results of Figure 11 and those concerning the total
number of found template loops indicate that there
is no improvement of the loop search when three
instead of one stem residues are used.

Optimization by use of energy functions

The initial orientation of the template loops after
stem superposition is usually not good enough to
be used directly in protein structure prediction. A
mainchain RMSD of less than 1 AÊ was found con-
sistently only for very short loops (four residues)
and for antibody loops with canonical structures.
Thus, in most cases there is a need to optimize the
loop orientation by energy minimization. Earlier
we investigated the ability of the 9-6 potential and
the CHARMM potential to identify the crystal
structure loop. In this section, we try to ®nd the
best energy minimization scheme to lower the loop
RMSDs and to simultaneously indicate the best
template loops by their energy values. We reorient
the template loop, keeping it rigid or nearly rigid,
by energy based methods to optimize their pos-
ition in space. Such sets of optimized loops are a



Figure 12. RMSD spectra of template loop minimization
results for 3sgb loop1 (®ve residues). Every horizontal
bar represents one template loop. Columns 1 to 9 show
the 50 template loops: after initial stem superposition
using N, Ca, and C atoms (n,ca,c); after MC optimiz-
ation including mainchain and Cb (mc1), and including
mainchain, Cb, and w1-de®ned atoms (mc2); after
CHARMM minimization, including mainchain and Cb

atoms, with (min1) and without (min3) dihedral con-
straints; after constrained CHARMM minimization with
complete sidechains added according to crystal structure
internal dihedrals (min5); after CHARMM minimization
with sidechains constructed according to rotamer library
(Dunbrack & Karplus, 1993), with (min7) and without
(min8) dihedral constraints; after superposition of the
loops themselves, which is the best reorientation poss-
ible for rigid template loops (®t). In columns 2 to 8,
three short horizontal bars to the right side of the col-
umn indicate the template loop with the lowest (thick
bar), second lowest (medium), and third lowest (thin)
energy. The target loop itself also underwent minimiz-
ations and is represented by the broken bar in every
column.

Figure 13. As Figure 12, for 3app loop3 (nine residues).
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good starting point for internal minimizations. It
appears from our results that such a two-step pro-
cedure is better than an unconstrained minimiz-
ation of the initially placed loop.

Because this aspect of the calculation is time con-
suming, we applied the different minimization
scheme to only ®ve target loops, they are 3sgb
loop1 (®ve residues), 3app loop3 (nine), 2act loop1
(15), 1rei L3 (six), and 4fab H3 (six). We then used
the best minimization scheme to study 14 ad-
ditional loops. To further reduce the calculation
time, we kept only 50 template loops from every
stem search. These were the 50 template loops
with the lowest RMSD after superposition of the
backbone on the target loop. This cannot be done
in a real prediction, and therefore the calculations
would be longer. Template loops with all backbone
dihedral angles within 60� of another template
loop in the set were excluded, to avoid multiple
loops with the same conformation. Since these 50
loops were selected on the basis of their super-
posed RMSD, they are the ones with the lowest po-
tential RMSD after reorientation and provide good
test cases for the various minimization protocols.
The particular loops that were selected for study
are essentially arbitrary, other than that they cover
the length range of the loops considered in this
paper.

The results of the various minimization methods
for 3sgb loop1 and 3app loop3 are summarized in
Figures 12 and 13. The ®rst column shows the
RMSDs of the 50 template loop backbones (N, Ca,
C) after superposition of the stem residues, using
N, Ca, and C, in calculating the ®t. Columns 2 and
3, labeled mc1 and mc2, list the results of two sets
of rigid-body MC optimizations that were done
with the 9-6 potential. The ®rst included only the
mainchain and Cb atoms of the template loops and
the second also included all atoms de®ned by the
w1 torsion angles of the sidechains. The w1 angles
were assigned by using the backbone dependent
rotamer library (Dunbrack & Karplus, 1993). Three
short horizontal bars at the right side of every col-
umn indicate the three template loops with the
lowest interaction energy with the target protein
after minimization; the thickest bar corresponds to
the lowest energy loop, the medium bar to the
second lowest, and the thin bar to the third lowest.
For comparison, the RMSD of the target loop with
the crystal structure is represented after the same
``optimization'' by the broken line in every column.
The rightmost column shows the RMSD values of
the 50 template loops after superposition of the
loop mainchain on to the target loop. Thus, these
are the best possible RMSDs that could be reached
with rigid optimizations of the template loops; in
four out of ®ve cases the optimum is an RMSD of
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less than 1 AÊ and in the ®fth (the largest loop,
2ACT loop1) it is less than 2 AÊ . In most cases, the
MC optimization performed poorly in an overall
sense. The average RMSD compared to the initial
®t went up, and the lowest energy loop did not
correspond to the one of the low-RMSD loops. In-
stead of running the full MC run at 5000 K and se-
lecting the lowest energy orientation, we also did
annealing runs, where the temperature was slowly
cooled from 5000 K to 300 K. This worsened the re-
sults slightly, rather than improving it (results not
shown). The MC optimization did work well for
the 3app loop3 target loop, where the lowest en-
ergy template loop has an RMSD of less than 1 AÊ

for both MC methods (Figure 13). This particular
template loop is a corresponding loop from a re-
lated protein and has a nearly identical confor-
mation (RMSD after loop superposition 0.23 AÊ ).
The MC2 optimization is somewhat better than
MC1 and, except for 1rei L3, had a low RMSD for
at least one of the three lowest energy structures.

The results of ®ve different optimization schemes
with the CHARMM potential are also shown
(Figures 12 and 13). Columns 4 and 5, labeled
min1 and min3, correspond to minimizations of
the template loop with only the mainchain and Cb

atoms (and their corresponding hydrogen atoms).
Minimizations were done with (min1) and without
(min3) the dihedral constraints described above.
No electrostatic terms were included in the results
given here, but minimizations with electrostatic
terms slightly worsened the results (not shown). In
accord with the results of the CHARMM potential
above, the inclusion of only the mainchain and Cb

atoms works well for identifying the template
loops with low RMSDs. In all cases, the con-
strained minimization results in a lowest-energy
Table 7. RMSD values, in AÊ , of mainchain atoms (N, Ca, C)

mc1 mc2 min1 min2 mi

3sgb-1 (5) 1 3.33 2.80 *0.37 *0.25 *0
2 2.97 *0.56 0.98 1.48 0
3 1.91 2.43 0.86 1.73 3

3app-3 (9) 1 *0.80 *0.52 *0.28 0.29 *6
2 3.99 2.65 1.85 1.74 3
3 1.54 2.07 1.48 1.57 3

2act-1 (15) 1 7.68 3.32 5.99 6.80 5
2 5.43 19.66 15.29 7.72 4
3 3.18 20.43 8.03 11.25 4

1rei-L3 (6) 1 6.21 6.43 *0.50 3.37 3
2 6.12 5.37 1.28 1.78 1
3 5.88 5.91 3.35 1.40 1

4fab-H3 (6) 1 3.00 1.78 1.07 1.12 1
2 3.30 2.71 1.36 1.17 1
3 1.84 3.21 1.20 1.17 2

Target loop names are abbreviated: 3sgb-1 stands for 3sgb loop1,
umn. The third column indicates the lowest energy loop (1), second
optimization schemes that were used: mc1: MC optimization with 9
de®ned by w1 included; min1: minimization with CHARMM poten
min3: as min1, with electrostatic terms included; min4: as min2, w
annealing instead of plain minimization; min5: minimization with d
to crystal structure internal coordinates; min6: as min5, no dihedra
mer library (Dunbrack & Karplus, 1993); min8: as min7, no dihedra
are indicated with an asterisk.
loop with a relatively low RMSD. The 2act loop1
target loop is an exception, probably because even
in their optimal orientations the template loops all
have RMSD's of �2 AÊ or more. These orientations
usually correspond to high energies, because of the
relatively tight loop packing (Leszczynski & Rose,
1986), and thus the minimizations will not result
in low RMSDs. The unconstrained minimization
slightly reduces the average RMSD values of the
template loop sets, but in two cases, it results in a
high-RMSD loop with the lowest energy (3app
loop3, 1rei L3).

The importance of including atoms of the side-
chains in template loop optimization was tested in
two ways. We tried the best-case scenario with the
complete sidechains in the crystal orientation on
the template loops. The results of minimizing with-
out dihedral constraints are shown in column 6
labeled min5. A more realistic scheme for modeling
purposes uses sidechain dihedral angles assigned
according to the backbone-dependent rotamer li-
brary (Dunbrack & Karplus, 1993); unde®ned di-
hedrals were set to 180�. The complete sidechains
were built, and minimizations were done with and
without dihedral constraints (column 7 and 8,
labeled min7 and min8, respectively). In the mini-
mizations with sidechains, electrostatics did not
give worse results, and they were included to pro-
vide a better representation of the sidechains,
which are often charged. Comparing columns 6
with columns 4, we can see that there is no signi®-
cant improvement when the best-case scenario
sidechains are added. The addition of the side-
chains according to the rotamer library also did
not improve the results. For none of the cases we
found a signi®cant lowering of the RMSD values,
of the three template loops with lowest energy

n3 min4 ann min5 min6 min7 min8

.38 *0.24 *0.60 *0.45 0.73 *0.30 0.71

.94 0.63 1.50 1.60 0.77 2.48 0.70

.21 0.63 2.03 2.63 *0.27 1.52 0.81

.04 6.00 *0.40 *0.46 *0.65 *0.95 1.05

.08 1.34 2.02 7.02 0.58 1.14 *0.81

.11 1.21 2.82 3.75 1.30 1.44 1.25

.57 3.58 6.86 17.15 4.43 5.92 4.76

.78 6.29 5.78 8.50 10.72 5.70 3.82

.26 4.19 5.72 7.72 6.18 6.85 4.30

.48 2.60 2.73 *0.45 *0.54 *0.97 5.04

.92 3.68 *1.02 *0.60 *0.60 2.65 2.40

.36 1.63 1.67 *0.44 1.66 *0.44 1.35

.41 1.01 2.38 1.62 0.87 1.09 0.97

.41 1.01 2.73 0.86 0.85 0.93 1.02

.33 1.01 2.47 0.71 0.85 1.11 1.57

etc. Target loop lengths in residues are shown in the second col-
lowest (2), and third lowest (3). The columns represent different
-6 potential, mainchain atoms � Cb; mc2: as mc1, but also atoms
tial, dihedral constraints; min2: as min1, no dihedral constraints;
ith electrostatic terms included; ann: as min1, but with simulated
ihedral constraints and electrostatics, sidechains added according
l constraints; min7: as min5, sidechains added according to rota-
l constraints. Corresponding template loops from related proteins



Table 8. Mainchain atom (N, Ca, C) RMSD values, in AÊ , of ten target loops from
Tables 1 and 2

2apr-1 (6) 8abp-3 (6) 2act-5 (6) 3tln-6 (7) 3grs-1 (7)

1 5.16 0.28 1.58 3.70 4.55
2 4.68 (0.09) 0.38 (0.13) 1.77 (1.78) 2.17 (0.78) 4.94 (4.07)
3 1.59 (0.77) 0.41 (0.28) 1.82 (1.86) 1.55 (2.38) 4.17 (5.53)
B 0.62 (1.79) 0.28 (0.00) 1.47 (2.23) 1.45 (4.81) 1.02 (7.30)

5cpa-2 (7) 2fb4-H1 (7) 2fbj-H3 (7) 3tln-4 (8) 3sgb-3 (9)

1 2.14 1.62 0.49 1.83 1.79
2 1.42 (7.04) 1.97 (0.48) 0.89 (1.87) 5.23 (1.02) 3.03 (6.16)
3 1.95 (7.19) 2.46 (1.90) 1.28 (3.71) 0.61 (1.36) 2.17 (9.68)
B 1.18 (58.7) 0.36 (3.47) 0.49 (0.00) 0.61 (1.36) 1.12 (17.2)

The three template loops with lowest loop-protein interaction energy are shown. The energy differ-
ence to the minimum energy is given in parentheses (kcal/mol). The number of residues of each
target loop is shown in parentheses after the loop name. The row labeled B shows the template
loop with the lowest ®nal RMSD.
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or better correspondence between loops with low
energy and loops with low RMSD.

In Table 7 we list the predictions that would be
made based on the energy values. We list the
RMSDs of the three template loops with the lowest
energy. If the template loop is a corresponding
loop from a related protein, it is marked with an
asterisk. Although several template loops for the
2act loop1 target loop could theoretically reach an
RMSD of less than 2 AÊ , the lowest RMSD that
would be selected by any of these methods is 3.6 AÊ

(min4). For the four remaining template loops,
both the constrained minimization of the main-
chain� Cb atoms (min1), and the constrained mini-
mization of the loops with rotamer library
sidechains (min7) give satisfactory results (three
out of four under 1 AÊ RMSD, one just above). This
was also re¯ected in energy versus RMSD scatter-
plots of the 50 template loops, where these two
minimization methods showed the best corre-
lations (results not shown). Surprisingly, there
does not seem to be a clear difference between the
antibody loop with canonical structure (1rei L3)
and the one without (4fab H3). Good template
loops for the 4fab loop were found in correspond-
ing positions of other antibody structures, as well
as in unrelated proteins. As mentioned before, this
could be because the advantage of canonical struc-
tures becomes clear only at loop lengths of seven
or more residues. The dihedrally constrained
Table 9. As Table 8, for four target loops from Fidelis et al.

3dfr-1 (4) 3dfr-5 (5)
Ener. Init. Fit Ener. Init. F

1 2.64 2.56 1.32 1.62 1.68 0.9
2 0.75 (1.07) 1.65 0.60 0.93 (5.91) 0.96 0.6
3 0.68 (1.73) 1.63 0.42 1.30 (12.1) 1.42 0.6
B 0.44 (3.72) 0.93 (5.91)
F 1.47 1.2

The column Ener. shows the three lowest-energy loops. The colum
umn labeled Fit lists the RMSD values after superposition of the m
F, shows the lowest mainchain RMSD values (after loop superp
(1994).
CHARMM minimizations gave signi®cantly better
results than the rigid body MC runs. There are two
likely causes for this. First, in the CHARMM mini-
mizations we allow the ®rst and last residue of the
loop to be unconstrained, and connect them to the
target protein with a strong bond. This moves
these two residues of the template loop closer to
the crystal structure orientation. For the MC optim-
izations, the full template loop is rigid and is held
close to the target protein by relatively weak Ca±
Ca bonds and angles. Second, although the tem-
plate loops are constrained, they are not comple-
tely rigid, and can deform somewhat during the
CHARMM minimizations. They can adjust some-
what to the rigid target protein and then ®nd
orientations with lower RMSDs; in the MC optim-
izations, the template loops are completely rigid.
However, it is also clear that signi®cant constraints
are important in obtaining the best results. In the
absence of constraints, the loop can distort locally,
rather than moving globally to a lower energy pos-
ition. Table 7 also shows that a simulated anneal-
ing scheme with dihedral constraints (column ann)
performed worse for all loops compared to the
constrained minimization.

Since the constrained minimization of the main-
chain � Cb atoms (min1) performed best, we used
it for 14 additional target loops. The ®rst ten were
selected from the set of target loops in Tables 1
and 2 with emphasis on intermediate length loops
(1994)

3dfr-6 (5) 3blm-1 (5)
it Ener. Init. Fit Ener. Init. Fit

3 0.47 1.33 0.37 0.82 1.27 0.60
4 0.41 (0.10) 0.75 0.36 0.86 (0.10) 1.59 0.63
6 0.42 (0.95) 0.89 0.26 0.72 (1.35) 1.55 0.64

0.33 (1.77) 0.65 (2.57)
3 1.09 2.15

n Init. shows the RMSD values after initial superposition. The col-
inimized template loops on the target loop. The last row, labeled

osition) that were found in the database search of Fidelis et al.



Figure 14. Wall-eyed stereo drawing of 2fbj H3 loop (seven residues) and all protein residues within 7 AÊ of the crys-
tal structure loop. Only mainchain and Cb atoms are shown (no hydrogens). The crystal structure loop is drawn with
thick continuous bonds, the predicted loop (RMSD 0.49 AÊ ) is drawn with thick broken bonds.
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(three of six residues, ®ve of seven, one of eight
and one of nine). The last four loops were shorter
(four or ®ve residues) and were taken from the
paper by Fidelis et al. (1994). For these loops they
found that a systematic search produced signi®-
cantly better template loops (in terms of internal
RMSD) than a database search. The database per-
formance test done here is much more stringent,
since we report the template loops with the lowest
energies instead of the ones with the lowest
RMSD. Moreover, we do not report the internal
RMSD (RMSD after superposition of loop), but the
actual RMSD of the template loop as it is built into
the protein. From the Fidelis et al. (1994) paper, we
chose dihydrofolate reductase (PDB entry 3dfr)
loops f1 (residues 20 to 23), f5 (89 to 93), and f6
(120 to 124), and b-lactamase (3blm) loop f1 (164 to
168). Tables 8 and 9 list the initial and ®nal main-
chain RMSD values of the three lowest energy tem-
plate loops found by the database search and
subsequent optimization. For comparison with the
results of Fidelis et al. (1994), we also report in
Table 9 the RMSD values after superposition on
the target loop.

None of the template loops shown in Tables 8 and
9 was a corresponding loop from a related protein.
The prediction results are variable. Loops with at
least one template loop below 1 AÊ are 8abp loop1,
Figure 15. Drawing of 3grs loop1 (seven residues) with
analogous to Figure 14.
2fbj H3, 3tln loop4, 3dfr loops 1, 5, and 6, and
3blm loop1. Most other target loops have at least
one with an RMSD of 1.8 AÊ or better. A very
poorly predicted loop is 3grs loop1, for which all
three lowest energy template loops have an RMSD
of more than 4 AÊ . Five of the 50 template loops
minimized to an RMSD of 1.5 AÊ or lower, but had
slightly higher energies. This target loop has a low
number of non-bonded contacts (distance <5 AÊ ) be-
tween its mainchain � Cb and the rest of the pro-
tein (excluding the loop itself and the two
neighboring anchor residues). For individual loop
lengths of ®ve, six, and seven residues, we ®nd
consistently that the target loop with most non-
bonded contacts is predicted best, and the one
with least contacts is predicted worst. For ®ve-resi-
due loops, the best predictions were for 3dfr loop6
(average RMSD of three lowest energy template
loops: 0.44 AÊ ) which has 50 non-hydrogen non-
bonded contacts within 4 AÊ and 169 within 5 AÊ .
Worst predicted was 3dfr loop5 (1.28 AÊ ) with 18
and 84 contacts, respectively. For six-residue loops,
best results were obtained for 8abp loop3 (0.36 AÊ )
with 61 and 252 contacts, and worst results for
2apr loop1 (3.81 AÊ ), with 15 and 58 contacts. For
seven-residue loops, we found best results for 2fbj
H3 (0.89 AÊ ) with 61 and 193 contacts (Figure 14),
and worst results for 3grs loop1 (4.55 AÊ ) with 14
crystal structure loop and predicted loop (RMSD 4.55 AÊ ),
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and 45 contacts (Figure 15), respectively. A low
number of non-bonded contacts implies that the
protein framework has only a small in¯uence on
the loop conformation, and internal forces and sol-
vent effects are relatively more important. These
effects are not taken into account in the present cal-
culations. Since the conformation of the target loop
is unknown, this non-bonded contact analysis can-
not be used to estimate the predictability of a par-
ticular target loop. However, we also analyzed the
number of contacts of the 50 minimized template
loops. If all template loops had a low number of
contacts with the protein framework (0 to 30 heavy
atom contacts of <4 AÊ ) for target loops of six and
seven residues, they were poorly predicted (2apr-1,
2act-5, 3grs-1). By contrast, well predicted loops
(e.g. 8abp-3, 2fbj-H3) had high numbers of contacts
for most templates (30 to 100). This suggests that
the number of contacts that exist for the set of tem-
plate loops can serve as an approximate accuracy
criterion for the target loop prediction.

The results for the 3dfr and 3blm loops are better
than those reported by Fidelis et al. (1994), even
though our RMSDs are based on more stringent
criteria. In all cases one of the three lowest energy
template loops had an RMSD of less than 1 AÊ . The
main cause for this improvement is our use of lar-
ger cutoffs in the stem searches. After the stem
searches, all four target loops have at least one
template loop with a mainchain RMSD of less than
1 AÊ , in contrast to results of Fidelis et al. (1994).
The subsequent energy minimization energy mini-
mization improves the RMSDs and makes it poss-
ible to choose the best, based on the energies.

One loop prediction takes from 50 minutes to two
hours on a SGI Power Onyx work station, depend-
ing on the loop length. The actual database search
takes only about ®ve minutes, and the rest of the
time is spent on minimization of the template
loops. A full loop prediction would take about 20
times longer, assuming that on the order of 1000
template loops have to be minimized. To speed up
the calculation, template loops with high energy
could be discarded early in the minimization
process.

Discussion

An approach for the predictions of loop structures
is presented and analyzed. It starts with a database
search of known protein structures. Given the da-
tabase, there are three parts to the prediction: the
selection of loop candidates, their initial orien-
tations in the target protein, and their evaluation
and optimization. A set of 130 target loops from
known protein structures has been used to test var-
ious aspects of the approach.

Analysis of the present PDB database has shown
that it contains templates for small to medium-
sized loops of up to nine residues. Generally, one
cannot expect to ®nd template loops in the PDB
with a mainchain RMSD of less than 1 AÊ for loops
of more than nine residues, though some useful
results can be obtained from the database for long-
er loops.

Given such a database, it can be used for ®nding
template loop candidates only if there exist search
parameters that correlate with loop quality
(measured as RMSD of the superposed loop main-
chain). In the cases studied here, correlations be-
tween loop quality and search parameter were
variable. Strong correlations were found between
the loop quality and the RMSD of the stem resi-
dues (stem1-3), but these parameters cannot be
used in a stem search. For actual searches, the
RMSDdist values (CA1, CA3, CACB1, CACB3) are
most useful. The R2s for the correlation between
loop quality and RMSDdist were as high as 0.7 in
some cases. The highest R2 values correspond to
loops of less than nine residues, and the corre-
lations were found to be worse for longer loops;
e.g. for loops of length 11, R2 values on the order
of 0.10 were obtained in general. Since the corre-
lation is rather weak, loop prediction algorithms
have to use large cutoffs to guarantee that the best
possible loop in the database is included; e.g. for
loops of length ®ve, an average of 1000 loop
alternatives must be included and for loops of
length nine, the number is about 1500. Analysis
shows that the required number increases only
slowly, if at all, with loop length, in contrast to the
exponential time increase involved in an exhaus-
tive search. We found the use of sequence hom-
ology to be virtually useless in the selection of
template loops. The correlation between the hom-
ology score and the template loop quality was
not signi®cant for any of the ®ve scoring matrices
that were tried (Risler et al., 1988; Nie®nd &
Schomburg, 1991; Gonnet et al., 1992; Henikoff &
Henikoff, 1992; SÏali & Blundell, 1990; results not
shown).

The set of hypervariable loops in antibody struc-
tures is an exception. Because of the available loop
conformations on similar protein frameworks,
Chothia & Lesk (1987) were able to derive rules
that predict a particular loop sequence to fold in
one of a limited set of conformational possibilities
(canonical structures). It is likely that any loop,
with a substantial amount of interaction with the
protein framework, has a limited set of ``canonical''
structures, in analogy with the antibody results.
On the other hand, there is no reason to assume
that the known set of canonical structures for anti-
bodies is complete (Steipe et al., 1992; Wu &
Cygler, 1993). The availability of canonically re-
lated loops in the PDB improves the results ob-
tained from template loop searches. It was shown
that for antibodies, except for the H3 loops, the
most similar template loops available in the PDB
are the canonically related loops. In addition, the
results after superposition of the stems are also
much better for the antibody loops than for loops
in general, if there are more than six residues. This
can be explained by the structural invariability of
the protein framework, and more speci®cally the
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stems, of antibodies. The antibody loops that do
not have a template loop with RMSD <1 AÊ after
stem superposition, are either H3 loops (no canoni-
cal structure), long loops (>ten residues), or loops
with no good canonical relative in the PDB. A re-
cent modeling study using canonical structures
and conformational search algorithms (Bajorath &
Sheriff, 1996) indicates the problems that exist even
under ideal conditions for antibody hypervariable
loop modeling. Although loops with excellent
quality were found, their orientation in space led
to mainchain RMSD values of 0.34 AÊ (L2) to 2.85 AÊ

(H3). The lack of good templates for H3 loops does
not mean that PDB-based methods cannot be used
in prediction of their conformations. By using en-
ergy minimization, both H3 loops that we tried to
predict had reasonable accuracies (RMSD of 0.49 AÊ

and 1.07 AÊ ), even though no corresponding anti-
body loops were in the database.

Different loop modeling studies based on the PDB
have used various numbers and schemes of stem
residues at each end of the loop to select the loops
(Claessens et al., 1989; Fidelis et al., 1994 (two be-
fore, one after loop); Summers & Karplus, 1990
(three, three); Tramontano & Lesk, 1992 (four,
four)). The present study indicates that the particu-
lar choice has only a small effect on the results.
Use of the Ca and Cb of one stem residue on each
side of the loop works somewhat better than three.
We see no advantage in using stems of more than
one residue for selecting and positioning the loops.

Fidelis et al. (1994) conclude that database searches
are limited to loops of four residues. From our re-
sults it appears that the present PDB is useful as a
database for longer loops as well, since for our set
of target loops, templates with a loop quality of
around 1 AÊ are present in the database for loops
up to nine residues.

Once a set of loops has been selected, it must be
positioned in the protein. The accuracy of the in-
itial placement of template loops by superposing
stem residues was dependent on the stem superpo-
sition method; best results were obtained by super-
posing only the ®rst stem residues, using the N, Ca

and C atoms. The accuracy was determined by cal-
culating the loop mainchain RMSD, when a known
loop conformation was modeled. Usually these
RMSD values were high (RMSD �2 to 5 AÊ ), a
direct consequence of the large variation in stem
conformations for similar loops. To permit selec-
tion and improve the orientation of the template
loops, an optimization based on an energy function
was made. The template loops can be reoriented as
essentially rigid bodies, because the dihedral con-
formational space is already explored by doing the
PDB search. It was shown that a modi®ed 9-6 po-
tential or a CHARMM-based interaction energy be-
tween the mainchain (N, Ca, C) and Cb of the
template loop and the rest of the protein structure,
can discriminate rather well between the native
loop and other conformations similar to the native
loop. Fine et al. (1986) also used a mainchain � Cb

(although including electrostatics) and found for
four antibody loops (®ve to 11 residues) that mini-
mization of the crystal structure resulted in only
small movements. For three of the four loops they
also found reasonable correlations between RMSD
(with respect to minimized loop) and energy.

A variety of schemes and potential functions (i.e.
four different reduced sidechain models) were
tried to account for the effect of sidechains, but
were found to be ineffective. Because of the aver-
age nature of the model sidechains, close side-
chain-sidechain contacts (with a favorable
CHARMM energy) often give rise to high model
sidechain energies. Further development in re-
duced sidechain models (Sun, 1993; Kolinski &
Skolnick, 1992; Kolinski et al., 1993) may help to
overcome this problem. Using predicted atom
based sidechains worsened the ability of the en-
ergy function to select the crystal structure loop
from the set of similar template loops.

The inclusion of an electrostatic energy term in the
energy calculation worsened the results, even for
the sigmoidal distance-dependent e (Figure 9a).
This sigmoidal e was developed to take the solvent
effect into account approximately. In the case of
surface loops it does not perform very well, which
may indicate that a high effective e is appropriate.
Smith & Honig (1994) report that the inclusion of
the electrostatic solvation free energy (by solving
the Poisson-Boltzmann equation) gives better re-
sults than the use of a distance-dependent e. How-
ever, when they set the atom charges of charged
sidechains to zero, to better mimic solvent screen-
ing in the distance-dependent e calculations, the re-
sults improved. Compared to this more strongly
shielded electrostatic energy, the use of the full
electrostatic solvation free energy only proved
marginally better.

Model building in X-ray structure re®nement is a
useful application (Jones & Thirup, 1986), since in
addition to the interaction energy, one can use the
experimental electron density to distinguish good
template loop conformations from bad ones. In
loop construction without X-ray density infor-
mation, the use of the database search method re-
lies heavily on the ability of available energy
functions to identify good loop conformations.

After determining the ability of the different en-
ergy functions to discriminate between the crystal
structure loop conformation and a set of alternate
template loop conformations, we used several of
the energy functions to optimize template loop
positions that resulted from a least squares ®t on
the stem residues. Nineteen loops were used to test
various optimization protocols. The best results
were obtained with a dihedrally constrained mini-
mization of the loop mainchain and Cb atoms. The
addition of predicted sidechains did not improve
the results. Constrained CHARMM minimizations
outperformed the rigid body Monte Carlo method,
most likely because of the ¯exibility of the terminal
residues of the loop, and the fact that the dihedral
constraints do not make the loops completely
rigid. We also employed a simulated annealing
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scheme with the constrained CHARMM potential,
but the results were signi®cantly worse than the
minimizations. It is possible that a more extensive
annealing scheme (ours consisted of a gradual
cooling from 1500 K to 300 K for a total of 25 ps,
followed by energy minimization) would perform
better.

The results indicate that complete rigidity of the
template loops will often result in relatively high
energies, even if the template loop orientation is
close to the target loop orientation. This is a direct
result of the close packing of loops that was
reported by Leszczynski & Rose (1986). A few
slightly displaced atoms can increase the energy
signi®cantly and complicate the prediction.

Recently, Zheng & Kyle (1996) obtained very good
results with their scaling-relaxation method for
three out of four protein surface segments of seven
residues (RMSD less or equal than 1 AÊ for the low-
est energy conformer). When we tried their energy
function for the 19 loops predicted in this paper,
our dihedrally constrained method worked signi®-
cantly better. This emphasizes the need to examine
a large number of different loops to obtain a mean-
ingful test of a prediction method.

The PDB search serves primarily as a way of
sampling a set of mainchain dihedral angles that
conform to the ®xed endpoints of the loop. Several
algorithms do the same thing by construction,
without using information from the PDB.
Examples are Bruccoleri & Karplus (1985), Moult
& James (1986), Shenkin et al. (1987), Dudek &
Scheraga (1990), Zheng et al. (1993a), and Ring &
Cohen (1994). The PDB search is the fastest avail-
able method for constructing a set of template
loops that can exist. It does not have the exponen-
tial increase in time with loop length of the sys-
tematic search methods. However, the resulting set
may be limited; e.g. for loops of ten residues or
more, the set did not include any conformation
close to the actual one. Fidelis et al. (1994) con-
cluded that for a set of loops of four to six resi-
dues, systematic search methods worked better
than the database search method. The comparison
is biased by the fact that their systematic search in-
volved a minimization (400 steps, no electrostatics)
of the mainchain � Cbs of each loop. Such an en-
ergy function has been shown here to be useful for
identifying the correct target loop and for optimiz-
ation of its position. Thus, a de®nitive comparison
would involve optimizations in the database
search, as well as for the systematic constructs, and
use of a larger number of loops in the former. In
addition, for the database search a stem residue
RMSD cutoff greater than 1 AÊ (that of Fidelis et al.
(1994)) should be used.

Besides being faster, database methods for loop
construction have another advantage. Systematic
construction methods mostly build the loop confor-
mations on the known stem residue coordinates. In
real homology modeling the stems are often not
very well de®ned, since they are located at the
ends of secondary structure segments. Therefore, a
systematic search can miss the correct loop confor-
mation, due to its use of the incorrect stem confor-
mation. Database construction methods have an
implicit inclusion of stem residue variability,
because of the RMSD cutoffs used in the loop
selection. They are, therefore, not as dependent on
the correct stem conformation. Database searches
are also ideally suited for the generation of
loops in protein engineering applications, such as
the one described by Borchert et al. (1994). Unlike
systematic construction methods, they simul-
taneously offer alternatives in loop conformation
and sequences that are able to adopt these con-
formations.

The main obstacle for successful use of database
methods in loop prediction is the poor orientation
of the loop that results from the stem superposi-
tion. It was shown here that energy minimization
can improve the orientation signi®cantly, and may
result in good predictions. Optimizations of the in-
itial orientation cost considerably more time than
the database search itself, however, and may offset
the faster search advantage of database methods
over construction methods. It is very likely that the
most ef®cient method depends on the environment
of the loop. Full construction methods such as
CONGEN (Bruccoleri & Karplus, 1985) take a very
long time to complete if the loop is not restrained
by neighboring loops or other parts of the protein,
or if the loop is more than six residues long. Other
construction methods (Zheng et al., 1993a; Shenkin
et al., 1987), which appear not to increase exponen-
tially with the number of residues, also have pro-
blems with unconstrained loops, because there is a
large number of possibilities with nearly identical
energies. The database search method only has a
limited number of template loops to analyze, and
may be faster for unconstrained loops than the
other methods. This would particularly be true if
the total number of existing loop conformations in
all proteins is smaller than the combinatorial num-
ber. Such a limited set of conformations (families)
has so far been proposed only for entire proteins
(Orengo et al., 1994).

The present analysis and application of various se-
lection and optimization criteria for loop predic-
tions starting with a PDB-based search suggests
the following algorithm for loops of nine residues
or less: (1) selection of template loops from the da-
tabase with the CACB1 parameters listed in
Table 5; (2) superposition of the template loop
stems using the mainchain atoms; (3) minimization
of the template loops in the target protein with the
CHARMM energy function and dihedral con-
straints; of the sidechains, only the Cb atoms
should be included and no electrostatic terms
should be used at this stage; (4) sidechain construc-
tion and more detailed unconstrained minimiz-
ations of the template loops to arrive at the ®nal
prediction; and (5) evaluation of the results in
terms of the number of non-bonded contacts. For
longer and highly exposed loops the present ap-
proach can be used but the expected lack of good
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template structures in the database means that the
likelihood of an accurate prediction is small.

Acknowledgements

We thank Andrej SÏali for helpful discussions and for
making the plotting program ASGL available to us. We
thank Hsiang-ai Yu for helpful advice concerning the
loop search problem. The calculations were done on an
SGI Predator with an R3000 processor and an SGI Power
Onyx with an R8000 processor. This work was sup-
ported in part by a grant from the National Institutes of
Health.

References

Allen, M. P. & Tildesley, D. J. (1987). In Computer Simu-
lations of Liquids. Clarendon Press, Oxford.

Bajorath, J. & Sheriff, S. (1996). Comparison of an anti-
body model with an X-ray structure: the variable
fragment of BR96. Proteins: Struct. Funct. Genet. 24,
152±157.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer,
E. F., Jr, Brice, M. D., Rodgers, J. R., Kennard, O.,
Shimanouchi, T. & Tasumi, M. (1977). The Protein
Data Bank: a computer-based archival ®le for
macromolecular structures. J. Mol. Biol. 112, 535±
542.

Borchert, T. V., Abagyan, R., Jaenicke, R. & Wierenga,
R. K. (1994). Design, creation, and characterization
of a stable, monomeric, triosephosphate isomerase.
Proc. Natl Acad. Sci. USA, 91, 1515±1518.

Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States,
D. J., Swaminathan, S. & Karplus, M. (1983).
CHARMM: a program for macromolecular energy,
minimization and dynamics calculations. J. Comp.
Chem. 4, 187±217.

Bruccoleri, R. E. & Karplus, M. (1985). Chain closure
with bond angle variations. Macromolecules, 18,
2767±2773.

Bruccoleri, R. E. & Karplus, M. (1990). Conformational
sampling using high-temperature molecular
dynamics. Biopolymers, 29, 1847±1862.

Bruccoleri, R. E., Haber, E. & Novotny, J. (1988). Struc-
ture of antibody hypervariable loops reproduced by
a conformational search algorithm. Nature, 335,
564±568.

Carlacci, L. & Englander, S. W. (1993). The loop problem
in proteins: a Monte Carlo simulated annealing
approach. Biopolymers, 33, 1271±1286.

Casari, G. & Sippl, M. J. (1992). Structure-derived
hydrophobic potential. Hydrophobic potential de-
rived from X-ray structures of globular proteins is
able to identify native folds. J. Mol. Biol. 224, 725±
732.

Chothia, C. & Lesk, A. M. (1987). Canonical structures
for the hypervariable regions of immunoglobulins.
J. Mol. Biol. 196, 901±917.

Chothia, C., Lesk, A. M., Tramontano, A., Levitt, M.,
Smith-Gill, S. J., Air, G., Sheriff, S., Padlan, E. A.,
Davies, D., Tulip, W. R., Colman, P. M., Spinelli, S.,
Alzari, P. M. & Poljak, R. J. (1989). Conformations
of immunoglobulin hypervariable regions. Nature,
342, 877±883.

Chothia, C., Lesk, A. M., Gherardi, E., Tomlinson, I. M.,
Walter, G., Marks, J. D., Llewelyn, M. B. & Winter,
G. (1992). Structural repertoire of the human VH

segments. J. Mol. Biol. 227, 799±817.
Claessens, M., Van Cutsem, E., Lasters, I. & Wodak, S.

(1989). Modelling the polypeptide backbone with
`spare parts' from known protein structures. Protein
Eng. 2, 335±345.

Collura, V., Higo, J. & Garnier, J. (1993). Modelling of
protein loops by simulated annealing. Protein Sci. 2,
1502±1510.

Collura, V. P., Greaney, P. J. & Robson, B. (1994). A
method for rapidly assessing and re®ning simple
solvent treatments in molecular modelling. Example
studies on the antigen-combining loop H2 from
FAB fragment McPC603. Protein Eng. 7, 221±233.

Coleman, J. E., Williams, K. R., King, G. C., Prigodich,
R. V., Shamoo, Y. & Konigsberg, W. H. (1987).
Mapping the functional domains in single-strand
{DNA}-binding proteins Gene5 and Gene32. Protein
Engineering, (Oxender, D. L. & Fox, C. F., eds),
pp. 323±336, Alan R. Liss, Inc., New York.

Creighton, T. E. (1993). In Protein Folding. W. H. Free-
man and Company, New York.

Crippen, G. M. & Viswanadhan, V. N. (1985). Sidechain
and backbone potential function for conformational
analysis of proteins. Int. J. Peptide Protein Res. 25,
487±509.

Dudek, M. & Scheraga, H. A. (1990). Protein structure
prediction using a combination of sequence hom-
ology and global energy minimization. I. Global
energy minimization of surface loops. J. Comp.
Chem. 11, 121±151.

Dunbrack, R. L., Jr & Karplus, M. (1993). A backbone
dependent rotamer library for proteins: application
to side-chain prediction. J. Mol. Biol. 230, 543±574.

Fidelis, K., Stern, P. S., Bacon, D. & Moult, J. (1994).
Comparison of systematic search and database
methods for constructing segments of protein
structure. Protein Eng. 7, 953±960.

Fine, R. M., Wang, H., Shenkin, P. S., Yarmush, D. L. &
Levinthal, C. (1986). Predicting antibody hypervari-
able loop conformations. II: Minimization and mol-
ecular dynamics studies of MCPC603 from many
randomly generated loop conformations. Proteins:
Struct. Funct. Genet. 1, 342±362.

Finkelstein, A. V. & Reva, B. A. (1992). Search for the
stable state of a short chain in a molecular ®eld.
Protein Eng. 5, 617±624.

Gerber, P. R. (1992). Peptide mechanics: a force ®eld for
peptides and proteins working with entire residues
as smallest units. Biopolymers, 32, 1003±1017.

Gonnet, G. H., Cohen, M. A. & Benner, S. A. (1992).
Exhaustive matching of the entire protein sequence
database. Science, 256, 1443±1445.

Greer, J. (1980). Model for haptoglobin heavy chain
based upon structural homology. Proc. Natl Acad.
Sci. USA, 77, 3393±3397.

Henikoff, S. & Henikoff, J. G. (1992). Amino acid substi-
tution matrices from protein blocks. Proc. Natl Acad.
Sci. USA, 89, 10915±10919.

Jones, T. A. & Thirup, S. (1986). Using known sub-
structures in protein model building and
crystallography. EMBO J. 5, 819±822.

Joseph, D., Petsko, G. A. & Karplus, M. (1990). Anatomy
of a protein conformational change: hinged ``lid''
motion of the triosephosphate isomerase loop.
Science, 249, 1425±1428.

Kabsch, W. (1976). A solution for the best rotation to
relate two sets of vectors. Acta Crystallog. sect. A, 32,
922±923.



1000 PDB-based Protein Loop Prediction
Kolinski, A. & Skolnick, J. (1992). Discretized model of
proteins. I. Monte Carlo study of cooperativity in
homopolypeptides. J. Chem. Phys. 97, 9412±9426.

Kolinski, A., Godzik, A. & Skolnick, J. (1993). A general
method for the prediction of the three dimensional
structure and folding pathway of globular proteins:
application to designed helical proteins. J. Chem.
Phys. 98, 7420±7432.

Leszczynski, J. F. & Rose, G. D. (1986). Loops in globu-
lar proteins: a novel category of secondary
structure. Science, 234, 849±855.

Levitt, M. (1976). A simpli®ed representation of protein
conformations for rapid simulation of protein
folding. J. Mol. Biol. 104, 59±107.

Martin, A. C. R., Cheetham, J. C. & Rees, A. R. (1989).
Modelling antibody hypervariable loops: a com-
bined algorithm. Proc. Natl Acad. Sci. USA, 86,
9268±9272.

Mattos, C., Petsko, G. A. & Karplus, M. (1994). Analysis
of two-residue turns in proteins. J. Mol. Biol. 238,
733±747.

McGarrah, D. B. & Judson, R. S. (1993). Analysis of the
genetic algorithm method of molecular confor-
mation determination. J. Comp. Chem. 14, 1385±
1395.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H. & Teller, E. (1953). Equation of state
calculations by fast computing machines. J. Chem.
Phys. 21, 1087±1092.

Mosimann, S., Meleshko, R. & James, M. N. G. (1995). A
critical assessment of comparative molecular model-
ling of tertiary structures of proteins. Proteins:
Struct. Funct. Genet. 23, 301±317.

Moult, J. & James, M. N. G. (1986). An algorithm
for determining the conformation of polypeptide
segments in proteins by systematic search. Pro-
teins: Struct. Funct. Genet. 1, 146±163.

Nie®nd, K. & Schomburg, D. (1991). Amino acid simi-
larity coef®cients for protein modelling and
sequence alignment derived from main-chain fold-
ing angles. J. Mol. Biol. 219, 481±497.

Orengo, C. A., Jones, D. T. & Thornton, J. M. (1994).
Protein superfamilies and domain superfolds.
Nature, 372, 631±634.

Pascarella, S. & Argos, P. (1992). A data bank merging
related protein structures and sequences. Protein
Eng. 5, 121±137.

Press, W. H., Flannery, B. P., Teukolsky, S. A. &
Vetterling, W. T. (1986). In Numerical Recipes. The
Art of Scienti®c Computing. Cambridge University
Press, Cambridge.

Reczko, M., Martin, A. C. R., Bohr, H. & Suhai, S.
(1995). Prediction of hypervariable CDR-H3 loop
structures in antibodies. Protein Eng. 8, 389±395.

Ring, C. S. & Cohen, F. E. (1994). Conformational
sampling of loop structures using genetic
algorithms. Isr. J. Chem. 34, 245±252.

Ring, C. S, Kneller, D. G., Langridge, R. & Cohen, F. E.
(1992). Taxonomy and conformational analysis of
loops in proteins. J. Mol. Biol. 224, 685±699.

Risler, J. L., Delorme, M. O., Delacroix, H. & Henaut, A.
(1988). Amino acid substitutions in structurally re-
lated proteins. A pattern recognition approach. De-
termination of a new and ef®cient scoring matrix.
J. Mol. Biol. 204, 1019±1029.

Rosenbach, D. & Rosenfeld, R. (1995). Simulations mod-
elling of multiple loops in proteins. Protein Sci. 4,
496±505.
SÏali, A. (1995). Modelling mutations and homologous
proteins. Curr. Opin. Struct. Biol. 6, 437±451.

SÏali, A. & Blundell, T. L. (1990). De®nition of general
topological equivalence in protein structures. A pro-
cedure involving comparison of properties and re-
lationships through simulated annealing and
dynamic programming. J. Mol. Biol. 212, 403±428.

SÏali, A. & Overington, J. P. (1994). Derivation of rules
for comparative protein modeling from a database
of protein structure alignments. Protein Sci. 3, 1582±
1596.

Shenkin, P. S., Yarmush, D. L., Fine, R. M., Wang, H. &
Levinthal, C. (1987). Predicting antibody hypervari-
able loop conformation. I. Ensembles of random
conformations for ringlike structures. Biopolymers,
26, 2053±2085.

Sibanda, B. L., Blundell, T. L. & Thornton, J. M. (1989).
Conformation of b-hairpins in protein structures. A
systematic classi®cation with applications to model-
ling by homology, electron density ®tting and pro-
tein engineering. J. Mol. Biol. 206, 759±777.

Skolnick, J., Kolinski, A., Brooks, C. L., III, Godzik, A. &
Rey, A. (1993). A method for predicting protein
structure from sequence. Curr. Biol. 3, 414±423.

Smith, K. C. & Honig, B. (1994). Evaluation of the con-
formational free energies of loops in proteins. Pro-
teins: Struct. Funct. Genet. 18, 119±132.

Steipe, B., PluÈ ckthun, A. & Huber, R. (1992). Re®ned
crystal structure of a recombinant immunoglobulin
domain and a complementarity-determining region
1-grafted mutant. J. Mol. Biol. 225, 739±753.

Sudarsanam, S., DuBose, R. F., March, C. J. &
Srinivasan, S. (1995). Modelling protein loops using
a fi � 1, ci dimer database. Protein Sci. 4, 1412±
1420.

Summers, N. L. & Karplus, M. (1990). Modelling of
globular proteins. A distance-based data search pro-
cedure for the construction of insertion/deletion
regions and Pro < > non-Pro mutations. J. Mol. Biol.
216, 991±1016.

Sun, S. (1993). Reduced representation model of protein
structure prediction: statistical potential and genetic
algorithms. Protein Sci. 2, 762±785.

Tanner, J. J., Nell, L. J. & McCammon, J. A. (1992). Anti-
insulin antibody structure and conformation. II.
Molecular dynamics with explicit solvent. Biopoly-
mers, 32, 23±31.

Tramontano, A. & Lesk, A. M. (1992). Common features
of the conformations of antigen-binding loops in
immunoglobulins and application to modelling
loop conformations. Proteins: Struct. Funct. Genet.
13, 231±245.

Vajda, S. & DeLisi, C. (1990). Determining minimum
energy conformations of polypeptides by dynamic
programming. Biopolymers, 29, 1755±1772.

Wlodawer, A., Miller, M., Jakolski, M., Sathyanarayana,
B. K., Baldwin, E., Weber, I. T., Selk, L. M.,
Clawson, L., Schneider, J. & Kent, S. B. H. (1989).
Conserved folding in retroviral proteases: crystal
structure of a synthetic HIV-1 protease, Science,
245, 616±621.

Wu, S. & Cygler, M. (1993). Conformation of comple-
mentarity determining region L1 loop in murine
IgG 1 light chain extends the repertoire of canonical
forms. J. Mol. Biol. 229, 597±601.

Zhen, Q. & Kyle, D. J. (1996). Accuracy and reliability of
the scaling-relaxation method for loop closure: an
evaluation based on extensive and multiple copy



PDB-based Protein Loop Prediction 1001
conformational samplings. Proteins: Struct. Funct.
Genet. 24, 209±217.

Zheng, Q., Rosenfeld, R., Vajda, S. & DeLisi, C. (1993a).
Loop closure via bond scaling and relaxation.
J. Comp. Chem. 14, 556±565.

Zheng, Q., Rosenfeld, R., Vajda, S. & DeLisi, C.
(1993b). Determining protein loop conformation
using scaling-relaxation techniques. Protein Sci. 2,
1242±1248.

Zheng, Q., Rosenfeld, R., DeLisi, C. & Kyle, D. J.
(1994). Multiple copy sampling in protein loop
modelling: computational ef®ciency and sensitivity
to dihedral angle perturbations. Protein Sci. 3, 493±
506.
Edited by P. E. Wright
(Received 12 November 1996; accepted 6 December 1996)


	PDB-based Protein Loop Prediction: Parameters for Selection and Methods for Optimization
	Introduction
	Theory and Algorithms
	Table 1
	Table 2
	Structural database selection
	Selection of target loops
	Loop search algorithm
	Calculation of loop properties
	Use of energy functions
	Use of stem searches for loop selection

	Results
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Correlations between loop quality and stem properties
	Antibody loops
	Determination of stem search parameter

	Energy based loop evaluation
	Loop selection and orientation based on stem criteria
	Optimization by use of energy functions

	Discussion
	Acknowledgements
	References


