
Elements of protein structure 
 
Proteins are described in terms of the sequence (primary structure), their short-range 
conformations and building blocks (secondary structure), tertiary structure (which is how 
the different secondary structures elements are packed together), and quaternary structure 
that describes how separate domains or individual chains of proteins are packed together. 
 
Proteins are one-dimensional polymers made of monomers – amino acids. There are 
twenty types of amino acids all of them share the same backbone structure. The amino 
acids are different in the side chains that contribute to the observed diversity in protein 
function and shapes. Without this diversity it is unlikely that protein would have a unique 
three-dimensional structure. Some of the side chain diversity is connected (but not 
limited) to residues that are either well solvated or poorly solvated in water (residues -- 
yet another name for the side chains).  
 
The side chains are considerably shorter that the protein backbone. Glycine is the 
smallest (only one hydrogen for a side chain). which allows significant flexibility. Proline 
is the most unusual since both ends of the side chain are covalently linked to the 
backbone.  
 
To quantitatively discuss protein conformations we start with a detailed description of the 
backbone of the protein. In the usual chemical notation an amino acid contains carbon 
(C), nitrogen (N), oxygen (O) and hydrogen (H) atoms. A bond between the atoms is a 
dash. We have 
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Below we write the chemical formula for the two exceptional amino acids as well as of a 
“generic” amino acid ( )xxx  where R  denotes the side chain. 
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A more colorful image of short protein chain (3 alanines) is attached below. The image 
was prepared with the cmoil program, a part of a larger package for molecular dynamics 
simulations (http://cbsu.tc.cornell.edu/software/moil/index.htm)  



 
 
 
The gray spheres are the hydrogen atoms of the amide planes. There is no real 
significance of making sphere only for them. The red/green sticks are bonds between the 
Cα  and the side chain center Cβ . 
 
A single protein chain varies in length from tens of amino acids to roughly 1,000. The 
polymer is never branched but is frequently cross-linked by hydrogen bonds and more 
rarely by sulphor bonds between cysteine residues. Backbone hydrogen bonding is the 
prime contributor to the so-called secondary structure, and is made between the amide 
planes (the hydrogen H  and the oxygen O  of the NHCO  groups). 
 
 
 
 
Where the dotted lines denoted a hydrogen bond. A hydrogen bond is significantly 
weaker than a covalent bond so under normal circumstances (room temperature) 
hydrogen bonds can be broken. Unfolding of a protein usually includes breaking a very 
significant fraction of the total number of hydrogen bonds. The cost of not forming 
hydrogen bonds when the protein is folded can be very high, and they are typically 
satisfied when the protein accepts a compact state. The condition of satisfying as many as 
possible hydrogen bonds for folded proteins limits the search space and “helps” the 
protein (and us) find the right conformation. Note that in the unfolded state the hydrogen 
bonding between amide groups does not play a significant role since the amide groups 
form alternative hydrogen bonding to water molecules.  
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The amide group, CONH , is rigid and planar and the typical geometry is trans 
 
 
 
 
 
 
 
The dotted lines denote the continuous direction of the rest of the protein backbone. Since 
this unit for all practical purposes is rigid and since the dotted bonds to the Cα  of the 
previous and next residues have fix lengths and orientations, the distance between Cα  of 
sequential amino acids is fixed at 3.8 angstroms (angstrom =10-8 centimeters). A useful 
reduced representation of a protein chain is based on the Cα  only. 
 
 
 
 
 
 
 
In which the only degree freedom are the angles θ  and φ . The index i , is the index of 
the amino acid. There is only one exception to the picture above and this is the amino 
acid proline. Proline may have amide planes in the cis configuration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The cis configuration has significantly shorter distance than 3.8 angstrom between the 
alpha carbons. 
 
Let us have a deeper look into the geometry of a single amino acid (L amino acid) 
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The alpha carbon is at the center of the cube. The bonding so create is of a tetrahedral 
geometry with angles of (roughly fixed at 109 degrees). The thicker line is the direction 
of the backbone and R  denotes the position of the side chain. The above picture is of an 
L amino acid. A mirror image isomer is the D amino acid that is not synthesized directly 
in the ribosome but by special enzymes for that purpose. A D isomer is made from the L 
isomer by flipping the position of H  and R . 
 
Note that there is no continuous transformation that is leading from L to the D structure. 
It is therefore important (since after all they are quite similar) to have a computational 
measure that will differentiate between the two. At the least we wish to avoid simulating 
a protein and accidentally constructing D amino acids instead of L. 
 
Consider four atoms (in that order) C N CO Rα − − − . The location of each atom is 
determined by a Cartesian vector ( ), ,r x y z= . We have  
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to determine the isomer (mirror image) state of the amino acid we consider the angle 
between the planes, the plane defines by the three atoms C N COα − −  and the plane 
define by N CO R− − . It is useful to compute vectors perpendicular to each of the planes 
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The scalar products of ( )1r⊥  and ( )2r⊥  is ( ) ( ) ( ) ( ) ( )1 2 1 2 cosr r r r⊥ ⊥ ⊥ ⊥⋅ = Φ , where Φ is the angle 

between the planes that we are after. The difference between L and D isomers of an 
amino acid will be in the sign of Φ . Unfortunately ( ) ( )cos cosΦ = −Φ . This means that 
we cannot get information on the sign of the angle from the scalar product. The product 
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( ) ( ) ( )1 2 sinN Cr r r V⊥ ⊥ −× ⋅ = Φ  is proportional to the volume enclosed by the three vectors and 
to the sine of the Φ  angle. If the result is positive we have the L isomer, if it is negative 
we have the D isomer. 
 
Another task that we will be interested in is how to measure similarity between two 
protein structures. In the same spirit to sequence comparison method in which we defined 
first a mean to measure similarity (the sum of similarities scores between aligned amino 
acids), we need to define a similarity measure between two structures. While it is possible 
to compare the position of all atoms in the two proteins, we shall be mostly interested in 
comparing the positions of the Cα  only. The reason being that we may compare proteins 
that differ in their side chain (but still have the same backbone).  
 
We consider two proteins A  and B  with the same number of amino acids n  (the 
question of alignment of two structures with different number of amino acids will follow 
the simpler case of overlap). The coordinate vectors of protein A  and B  are denoted by 

AX  and BX  respectively. Each of these vectors is of length 3n  including the (x,y,z) 
(Cartesian) positions of the Cα -s of the amino acids.  The rank 3 vector of amino acid i  
in structure A  is denoted by A

ir . The distance between the two structures D  is defined 
(and written explicitly as) 
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Hence we think on the two proteins as a collection of points, or alternatively as a point in 
3n  space for which we compute norm two of the vector difference 

2A BX X−  
 
Since the coordinates are defined in Cartesian space, it is possible to translate or rotate 
one of the structures with respect to the other without changing any of the internal 
distances between the points that belong to the same object, the protein. That is, 
maintaining its rigid shape. For simplicity we will always move structure A . 
 
We will consider the translation and the rotation separately. A translation is defined by 
adding to each of the A

ir  vector a single constant vector t . A rotation is defined by 
multiplying a coordinate vector by a 3x3 matrix U  (e.g. A

iUr ). U  satisfies 1tUU =  and 
det( ) 1U =  (** What are the conditions on U  good for?) 
 
 
Let us start with the simpler problem, that of translation. We wish to determine t  so that 

2D  is minimal. This is trivial 
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Hence, all we need to do is to correct the position of A

ir  by the difference in the 
geometric centers of the two proteins. After doing this we will be ready to consider the 
more interesting problem of overlapping two structures, the problem of rotation.  
 
In fact, to make sure that the next item on the agenda is pure rotation we will set the two 
geometric centers of the two proteins to zero. In the following derivation we assume that 
this was already done. We will keep the same notation of A

ir  and B
ir  for the vectors with 

the adjusted translation.  
 
To correct for possible rotations we write yet another optimization problem 
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The constraint is inserted to the optimization using Lagrange’s multipliers. 
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The unknowns that we wish to determine are all the elements of the U matrix (9 in all). 
However, the constraints reduce the number of unknown (** to how many??**). To find 
the minimum of 2D  subject to the constraint of unitary matrix U , we differentiate with 
respect to the matrix element iju , we have 
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We now define two matrices 
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With the help of the above definition we can write 
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 in a more compact form  

 
( )U S R+ Λ =  

 
We have one matrix equation with two unknown matrices (!) -- U  and Λ . Of course, 
things are not so bad since we still have the constraint equation: 1tUU =  
Note also that ( )S + Λ  is a symmetric matrix. On the other hand R  is not symmetric 
which makes our problem a little more interesting. The following trick will eliminate 
some of our problems: Multiply the last equation by its transpose: 
( ) ( )t t tS U U S R R+ Λ + Λ =  
 
and using 1tU U =  constraint eliminates U  from the equation. 
 
( )( ) tS S R R+ Λ + Λ =  
 
The eigenvectors of ( )S + Λ  - ka  are the same as the eigenvectors of tR R  (assuming no 

degeneracy). The eigenvalues of tR R  are 2
kµ . The corresponding eignevalues of ( )S + Λ  

are therefore 
 
( ) k k kS a aµ+ Λ = ±   (the eigenvalues of the square of the matrix are determined only up 
to a sign) 
 
Recovering now the original equation we realize that  
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The set of orthonormal vectors kb  are obtained by rotating the set ka  with the (unknown) 
U . However the kb are also the “left” eigenvectors of R . The right and the left 
eigenvectors, and the eigenvalues can be obtained directly from Singular Value 
Decomposition (SVD) of the asymmetric matrix R . Finally our optimal distance can be 
computed more directly without thinking on U  at all (of course to make a nice plot of 
overlapping structures requires the rotation matrix): 
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Problems to think about 

• What shall we do if the determinant of U is not +1, or what to do about the sign of 
µ ? 

• What may happen if both molecules are planar/linear? 
 


