CS 626: Elements of Molecular Dynamics 

II. The Molecular Dynamics Approach

In the Molecular dynamics approach we determine the time evolution of a molecular system. This time evolution is called a trajectory and is denoted by 
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 is the coordinate vector of all the atoms in the system and 
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 is the time. The classical equations of motion that determine a trajectory are
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where 
[image: image5.wmf]M

is the mass matrix (diagonal for Cartesian coordinates) and 
[image: image6.wmf]U

 is the microscopic interaction potential. With two initial conditions are 
[image: image7.wmf](

)

0

Xt

=

r

 and 
[image: image8.wmf](

)

0

0

t

dX

Vt

dt

=

=º

r

r

 equation (1) can be solved in small time steps. An algorithm to solve numerically equation (1) that is used widely in condensed phase simulations is Verlet [x]
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The index 
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 is for the discrete time measured in steps of 
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D

. The equation for the coordinate vector resembles a second order Taylor expansion in the time step. To obtain an accurate solution the time step should be small. The typical time step that is used in numerical solution of equation (2) is a femtosecond (
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 seconds). To reach a microsecond and watch an ion migration through a channel, 
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 femtosecond steps are required. Moreover, milliseconds (and 
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 steps) are required to simulate gate opening in channels. The large number of steps necessitates tremendous resources and cannot be done in a routine way. The sequential solution that is obtained from equation (2) is therefore restricted to the nanosecond time scales mentioned earlier.

The reason for the apparent bound on the step size is stability. Some of the coordinates change rapidly in time (bond vibrations, atomic collisions), and it is necessary to use relatively small time steps to follow the rapid changes. If the basic time step is increased beyond a few femtoseconds, the solution accumulates exponential errors. It means that the coordinates “blow-up” and after a few steps they do not resemble a known biomolecule. An example for a numerical “blow-up” is shown in figure 1 for the harmonic oscillator. When the time step is larger than a fifth of the period, the solution loses stability. 

The solution of the Newton’s equation of motion provides a trajectory that conserves energy 
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· Prove it

From numerical perspective it is useful to have a conserved entity since it can be used to test the accuracy of the integration. Another property of Newtonian trajectories that is useful in simulation is of time reversal. The trajectory is symmetric in time. Given coordinates and velocities at time zero, 
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, a trajectory can be computed that gives at time 
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. If we now start a new trajectory, 
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 with initial conditions that are related to the end point: 
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, then after time 
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 we will have 
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. This is a considerably more strict condition.

· Note that the Verlet algorithm as given above does not satisfy time reversal. Can you show it? Can you design a simple algorithm that will satisfy time reversal?

The Newton’s equation provides configuration (coordinates) sampled from a trajectory in which the energy is constant. Many experiments (such as the measurements of protein folding rate) are done at constant temperature. The Langevin equation (below) provides configurations at constant temperature.
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where 
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 is the friction constant, 
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 is the random force: 
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is a constant (Boltzmann constant) 
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 is the temperature and 
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 is the Dirac delta function: 
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Write a Verlet-like algorithm for the Langevin equation
The above formula generates configuration at constant temperature 
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Is the energy conserved? Does a Langevin trajectory obey time reversal?
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