Global optimization and the protein-folding problem

1. Potential smoothing

We consider the problem of finding the global energy minimum of a function 
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 is the vector of coordinates. It is assumed that 
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 has multiple minima and that the vector 
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 is of high dimension (a few thousand degrees of freedom), which is typical for proteins. We assume that elements of 
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 are taking continuous values 
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, though in some of the optimization examples that are considered the coordinates are embedded in a lattice and as such are discrete.

In a caricature projection of the energy function to one dimension we expect the following qualitative picture:
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We are interested in the position pointed to by the above thick arrow.

We will approach the problem of optimizing the target function in two steps. First, we shall examine how can we distort the function 
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 in such a way that the optimizing will be done efficiently. We call this section “potential smoothing”, a name that will become clearer as we go along. Second we shall consider searches for the optimal coordinate set with a given potential function. We will note that the search and the smoothing are actually coupled.

1. Potential smoothing

Consider the transformation of the above potential to a new potential drawn in a dashed line below

Clearly the function drawn with a dashed line is much easier to optimize. The optimization of the last can be done based on local information only. Starting from an initial guess (say 
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), then following the negative direction of function gradient 
[image: image11.wmf](

)

0

Ux

-Ñ

, and taking a small step, 
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, (where 
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 is a small positive scalar), we will find a new coordinate set with a lower energy that monotonically will approach the global energy minimum. Since the energy is assumed bound from below the process is converging.

Transformation such as the one above can be defined by the following integral transform
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 where 
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 is the kernel, transforming from the coordinate set 
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 to the coordinate set 
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 using the smoothing strength parameter 
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.

Ideally we wish the location of the global energy minimum, 
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 in the original potential function 
[image: image20.wmf](

)

UX

 to remain the same in the transformed potential 
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. In practice this is very hard to achieve, since the smoothing depends on other characteristics of the energy function in addition to the location of the minimum. It is difficult to obtain a complete analytical and continuous smoothing with only one minimum on the effective energy surface 
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 and at the same time maintaining the position of the global energy minimum. This is (perhaps) why there are so many methods out there with the same goal in mind.

The first approach that was described as a smoothing protocol was based on a Gaussian transform
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At the limit of 
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 approaching zero the Gaussian becomes “flat” and the result of the integral becomes independent of 
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. Hence 
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 is a constant and is smooth completely with no memory of the original function. Clearly we wish to use smoothing conditions that are no so extreme, and we consider this limit only for demonstration purposes. The other limit of interest is when 
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.in which the Gaussian becomes very narrow and the “smooth” energy is identical to the original function (no smoothing at all!). This limit is also a realization of the delta function, 
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,  which we shall discuss later, i.e.
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At intermediate 
[image: image30.wmf]l

 values we anticipate significant smoothing while still maintaining some of the extended slow variation of the potential with respect to relevant coordinates.

The qualitative picture below explains why the minima are being raised up in energy, while the maxima (the barriers) are lower as a result of applying the transform.







The thin line is the original potential the dotted lines described two positions of the Gaussian kernel as a function of the coordinate 
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. One of the Gaussians is on top of a minimum and the second on top of a barrier.  The transformed minimum energy is higher than the original energy and the transform energy at the barrier position is lower than the original, resulting in a smoother energy surface.

· As an exercise, find an analytical expression for the transform potential 
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 when the original potential is 
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 and discuss different smoothing limits.

A few comments are in place.

The transform (that averages the energy over the range of the Gaussian) does not preserve the ordering of the minima. Even in the simple picture above, the lowest energy minimum is narrow and is raised in value by the transform to the extent that it is no longer the lowest energy minimum in the transformed potential energy. Wide minima get smoothed more slowly. This is an example in which smoothing can being us to the wrong minimum.

There is another realization of the Gaussian transform which is differential in nature. This can be understood noting that the Gaussian transform is an integral representation of the diffusion operator, and an equivalent formation of the Gaussian smoothing can be found using differential smoothing operators. Making the long story short consider the following differential operator
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where 
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 denotes a second derivative and 
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 is a positive scalar. While the expression above is given for a one-dimensional case, generalization to the multidimensional case is simple. Consider the evaluation of the operator at a minimum point. There the second derivative of the function is positive and the value of the function will be higher than the original. Consider next the evaluation of the operator at a barrier position. Then the second derivative is negative and the barrier height of the transform function is therefore reduced. Hence, the qualitative effect of the differential operator is similar to that of the Gaussian transform. 

It is also possible to imagine that a repeated operation with 
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 will lead to complete flattening of the energy surface similar to the effect of  large 
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 value. That the two approaches are indeed the same requires some mathematical manipulation that we do not provide here. Instead we provide a hint of how to derive the differential formula from the integral equation using the limit of 
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. In this limit the Gaussian is narrowly focused in the neighborhood of a single point, say 
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, and we can ignore contributions far from the focused point. Expanding the potential in a Taylor series up to the second order we have: 
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 that approximates the function 
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 at 
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. This approximation should be sufficient since the Gaussian is narrow. The integration over 
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 can now be done explicitly, where the first and the third terms remain, giving the differential form of the smoothing protocol. The second term vanishes since the function is asymmetric.

Note also that the Gaussian transform is by no means unique. Many other transforms exist that distort the energy function making it more accessible for direct minimization. Another example is the bad-derivative method of Straub and co-workers. If you have done the exercise for the Gaussian transform you know by now that computing integrals is a lot of work. The potential energy function can be more complicated that the choice we have made, making the analytical work complex and unrewarding. This is one of the significant advantages of integral transform smoothing protocols. The bad-derivative method is going around that problem. There, the kernel takes the form
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It is called the “bad-derivative” method since the derivatives of 
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 can be computed directly from the original potential without computing explicitly the derivatives. Hence, not only we are not required to compute integrals here, but it is not even necessary to compute analytical derivatives (derivatives can be used to guide the search) 
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The exact derivative of the smoothed potential is an approximate finite difference derivative of the original potential. For a sufficiently large step 
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, we could think on the finite difference expression as a bad derivative estimate of the true potential. We emphasize, however, that this is the exact derivative of the smoothed potential.

The above nice expression is not only pink. We first note that the smoothing here is not as effective as in the Gaussian transform and that the derivative can in practice fluctuates quite widely and includes considerable local noise. We also note that if the system is of high dimension many function evaluations are required to estimate one gradient (i.e. for a single step of minimization). The point is that each element of the gradient vector requires two function evaluations. This can be quite expensive.

One may define numerous types of transforms with relative pluses (and minuses). The last possibility that we mention here resembles “potential-of mean-force” (the name was given for those with chemical physics background). David Shalloway introduced the transform below


[image: image49.wmf](

)

(

)

(

)

(

)

2

000

1

;logexp

VXUXXXdX

l

bbl

b

éù

=----

ëû

ò


A plus of the above expression is that the transformed potential is well behaved even at hard cores, which is a general difficulty in optimization algorithms (it is difficult to connect conformations if some atoms need to pass through each other). A minus is that the analytical work (integrating over potential in the exponent is even harder.

2. Sampling and generation of distribution.

One difficulty with smoothing algorithms is that the functional form of the “smoothing kernel” is arbitrary and is chosen by trial and error and experience. It is also restricted in the choice of functional form to allow easy analytical work or computations. Certain choices may also be inappropriate for the problem at hand. For example the Gaussian smoothing we considered has the same length scale in all dimensions. It is possible that the potential under investigation will have two different length scales in different directions. Uniform smoothing will get one of the directions correctly, but will leave the roughness in the other. There is a hidden assumption in all of the smoothing protocols that there is a length-scale separation in the system. Due to the above limitations there is significant interest in generating flexible distributions that may adapt to the roughness of the function at hand.

One such approach is to use trajectories. A sequence of structures generated sequentially according to a pre-specified algorithm, stochastic or deterministic. I.e. given a current (or a guess vector) 
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  we generate according to the pre-specific procedure a new coordinate set 
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. A famous example for an algorithm of this type is the Metropolis Monte Carlo algorithm defined by

· Specify an initial system configuration 
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· Start looping. Save all configurations 
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· Generate a new configuration using a random step: 
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· Compute the Metropolis criterion: 
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· Accept or reject the new configuration by sampling a uniform random number,  
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, between 0 and 1 and comparing it to 
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· For 
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 keep the old configuration 
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. For 
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 accept the new configuration 
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Where 
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, and 
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 is the temperature.

Of interest is the histogram of frequency of finding the system at a given state (if the configurations take continuous values then we bin them at some interval). The probability of being at the neighborhood of a particular configuration 
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. For the Metropolis algorithm we have (under the condition of state connectivity, proof is not given)
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Hence the probability of observing low energy configurations is exponentially larger for lower energy. However, as the temperature increases the difference between the weighting of the alternative configurations becomes smaller. 

In the present discussion we search for the global minimum and we are therefore interested in the distribution of configurations at very low temperatures. However, acceptance of trial moves at the very low temperatures is very low too. If we start at a position different from the global energy minimum we will have significant difficulties in finding it. This is since the configuration space at the limit of zero temperature is not connected. It is therefore desirable to sample configurations at a sequence of temperatures starting from high temperatures (that efficiently explores alternative conformations) and ending at lower temperatures yielding the distribution which we are interested in. Hence, we define a sequence of Monte Carlo Metropolis runs for each of the temperatures.

If we start at a high temperature what should be the rate in which the system is cooled down (the temperature is made lower)? An interesting quantity to watch is the heat capacity:
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The averages of the potential energy are performed using the sequence of structures generated by the Monte Carlo Metropolis algorithm. However, since the weight of the configurations is already built into the sampling, using the Metropolis configurations the average becomes:


[image: image69.wmf](

)

i

AX

A

N

=

å


where 
[image: image70.wmf]N

 is the number of configurations. Consider the sketch of a model potential below





Consider a linear annealing in which the temperature is decreased monotonically as a function of the Monte Carlo Metropolis step. During the annealing process, the heat capacity is a slowly varying function excluding the critical temperature 
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. A schematic plot of the heat capacity as a function of temperature is:



The system is making a BIG decision at 
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T

, the distribution bifurcates between two alternative minima and it better do it right. Once the temperature is significantly lower than 
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 it is difficult to come back and to correct decision made at 
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. It is therefore important to take our time in making the decision near 
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 which means longer simulations at the critical points. A longer simulation will represent better the equilibrium state that prefers the lower (free) energy minimum.

A useful practice is therefore to have multiple simulated annealing runs, in which we learn from one run to the next. The first quick and dirty run could use poor sample to roughly point to the temperature domains in which a transition is observed. Once the approximate location of the critical transition(s) is (are) known, a new simulation is initiated, a simulation that spends considerably more steps at the critical temperatures.

An important idea that we should pick up from the Metropolis algorithm is the notion of trajectories and the creation of numerical distributions (by binning configurations sampled from the trajectory). In the smoothing protocols (e.g. Gaussian smoothing) the shape of the distribution that we use to average the potential was fixed (a Gaussian) . The trajectory language makes it possible for us to generate a very flexible smoothing distribution. This we can do by iterations (using prior trajectory to extract smoothing distribution) or attempting to learn the distribution during the run. We can represent a distribution as a collection of trajectories. A trajectory is a set of configurations 
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 is the number of the Monte Carlo steps. In a continuous representation (that we adapt for convenience) a trajectory is a curve, 
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. Multiple trajectories are denoted 
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. We define the probability density of a bundle of trajectories as:
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Note the difference between the spatial variable 
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 and the vector of parameters 
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 describing the trajectory as a function of time. The delta function is of Dirac. It is defined by the following relationship:
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At the limit of long time the system is assumed to reach an equilibrium state. Hence, the density (averaged over time and configurations) becomes independent of time.

In the above formulation the trajectories are independent, therefore there is no averaging or smoothing for each individual trajectory. Coupling different trajectories can produce averages during the run. This coupling is obtained, for example, by mean field approaches. 

The LES approach discussed below is such a a mean filed protocol.

The Locally Enhanced Sampling approach (LES)

In the LES protocol (Locally Enhanced Sampling) we consider multiple trajectories of a small interesting part of the system. An example for application of LES is the modeling of a few side chains in a protein.





The above schematic picture of a backbone and side chains attached to it exemplifies the basic idea of the LES approach. For a single backbone configuration we use multiple configurations of the side chains. In a single configuration we test a number of alternative side chain conformation making the sampling of alternative states more efficient. This is made clearer by the more quantitative description below:

We separate the coordinate vector into two parts. One part that is of smaller interest than the other or is approximately known (e.g. the protein backbone) and a second part to be enhanced (the side chains). We have: 
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in which for every backbone trajectory (e.g. 
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) we have multiple side chain 
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). Note that the separation of space here is only to two parts; more divisions into additional mean-field domains can be applied.

The effective potential at a given snap shot of time will be “averaged” over a single backbone configuration (no smoothing) and over the multiple side chains (resulting in some smoothing). We have 
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. For a given 
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 trajectory of the backbone (one of 
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 backbone trajectories) there are 
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 side chain trajectories and an average is performed on all of these trajectories. 

The derivative of the backbone motion is averaged over the side chains states resulting in a smoother potential for backbone flexibility
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This is equivalent to smoothing the potential energy in the subspace of the side chains using the current distribution of side chains. It is analogous to the use of a Gaussian, however, here the distribution is a set of discrete points.

Averages on the move are quite difficult to do since they require a large number of trajectories to obtain meaningful averages over a single time slice. Here we can use for our benefit the ergodic hypothesis, stated as follows

Consider a scalar function 
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The summation is over all possible configurations, and the denominator is the normalization factor (the probability should sum up to one). If the vector 
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 accepts continuous values the summation is replaced by an integral over all coordinate value
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Note that in the Metropolis Monte Carlo algorithm we generate configurations sampled with the weight 
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 (without the normalization) that are appropriate for the above desired distribution.

In order to generate these distributions we consider a lot more than a single step slice. If the system is in equilibrium then all the steps are employed.

Generalized ensembles

For the prime problem at hand: determining configurations of low energies, we comment that we are not really interested in the above distribution but rather in 
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 now denotes the probability density, and 
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 is the density of configuration at 
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. The density of configurations in the distribution of potential energies is rapidly increasing function of the system dimensionality. As a simple demonstration consider a quadratic potential energy 
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 then the density of configuration (or the number of degenerate states) is proportional to the norm of the vector 
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 and (of course) to the square root of the potential - 
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. For 
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 dimensions we may have 
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 is in the thousands (as is the case for proteins). The maximum of 
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The configuration we are going to sample using the straightforward Metropolis crieterion will be in the neighborhood of 
[image: image113.wmf]max
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 and not necessarily the lowest energy configuration that we desire. The sampling of low energy configurations can be enriched by using generalized ensembles or modified energy function. If we modify our Metrolopolis acceptance criterion to be 
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 where
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 is estimating by binning into energy histograms then the weight of configurations will be 
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 (in the coordinate representation). In the potential energy representation we will have: 
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. Hence if our initial estimate for the potential energy density was accurate the density rations will be close to one and we will obtain significant enhancement of configurations at the lowest energies.

If the estimate is not close enough (i.e. the ratio 
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 is significantly different from 1) we can histogram again and have yet another correction -- 
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 as extracted by binning the last simulation. In the next sampling experiment the weight function for the Metropolis algorithm.
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This process can be repeated as desired to obtain a better flattening of the potential energy distribution

Multiple tempering

The above procedure of iteratively distorting the distribution to a more desirable form is very useful and general. In principle we can distort the distribution along any desired coordinate, not only the potential energy. On the other hand it is quite complex. And requires considerable manual work. It is desirable to have a fully automated algorithm that generates flats or focused distributions during the simulation process. One such automated algorithm is the multiple tempering. The basic idea is to run simultaneously a number of trajectories at different temperatures, say 
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. If uncoupled each of these trajectories will provide (asymptotically, at the limit of infinite time) a distribution of configurations with weights 
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. However, the relaxation rates of reaching those equilibrium distributions will be different at different temperatures. For example, we expect the higher temperature distributions to relax a lot faster to equilibrium compared to lower temperatures (that we are interested in). To make the relaxation times (or the number of steps) more uniform between different temperatures we introduce another move (between trajectories of different temperatures). A switch between two temperatures is allowed according to the weight 
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