<u>CS 626 - COMPUTATIONAL MOLECULAR BIOLOGY</u> T/R 2: 55-4:05 Upson 205

Lecturer: Ron Elber, <u>ron@cs.cornell.edu</u>, 5-7416, Walk-in-time M 10-11; W 10-11, R 9-10; F 2-3 Grade: 70% three projects; 30% take-home final (24 hours) There is no single textbook. Detailed handouts will be provided.

- (A) Sequence annotation
 - a. Elements of DNA and protein sequences.
 - b. Exact sequence comparison.
 - c. Statistical significance of alignments.
 - d. Alignments with statistical models.
- (B) Modeling protein structures
 - a. Elements of protein structure
 - b. Comparing protein shapes
 - c. Threading: matching sequences to structure
 - d. Prediction of secondary structure
 - e. Minestrone soups or algorithms for fold recognition
- (C) "Ab-initio" modeling of protein structure
 - a. Typical energy function for protein folding: reduced models, atomically detailed models, models of solvation.
 - b. Global optimization techniques: Monte Carlo, Simulated annealing, smoothing algorithms
 - c. Modeling side chains: Continuous space optimization, rotamer libraries, mean field approaches, dead end elimination
 - d. Loop modeling using molecular dynamics and mean field approaches
- (D) Modeling protein function
 - a. Computing thermodynamic differences: Free energy perturbation, umbrella sampling
 - b. Ligand diffusion pathways (use of a mean field approximations)
 - c. Computing reaction coordinates for conformational transitions
- (E) Use of existing open software
 - a. Conditions for use
 - b. MOIL
 - c. LOOPP