April 18, 2019

Last time: network centrality

1. PageRank
 \[\alpha P x + (1-\alpha) v = x \]

2. HITS (Hubs & Auth)
 \[A = UEU^T \]
 \[\text{auth} = U, \quad \text{hub} = U_1 \]

3. Eigenvector
 \[A x = \lambda_1 x \]

4. Katz
 \[(I - BA^T) R = BA^T \]
Hypergraphs
instances of small sets
- multiple recipients on email
- authors on a paper
- multiple drugs/medications for patients

Nodes

Hyperedges

Diagram: [hand-drawn diagram]
Adjacency tensor

simple model:
- size 3 relationships
- no direction

\[A_{ijk} = \begin{cases} 1 & \text{if } \{i,j,k\} \text{ is in dataset} \\ 0 & \text{otherwise} \end{cases} \]

Tensor-based PageRank
(Gleich, Lim, Yu 2015)

\[\alpha P x + (1-\alpha) v = x \]

What is "P" matrix for tensors?
columns normalized to sum to 1

"unfold"

normalize to sum to 1

refolding
Matrix case
\[\alpha P x + (1 - \alpha) v = x \]

Tensor case
\[\alpha P x^2 + (1 - \alpha) v = x \]

\[
\left[P x^2 \right]_i = \sum_{j,k} P_{ijk} x_j x_k
\]

\[
\begin{pmatrix}
 x_1 x & x_2 x & \cdots & x_n x
\end{pmatrix}
\]

\[
= P x^2
\]

Does a solution even exist?
Yes!
Claim: \(f(x) = \alpha \sum x^2 + (1-\alpha)v \)
is a stochastic vector
\((1^T f(x) = 1 \quad f(x) \geq 0)\)

Proof:
\[
\sum x^2 = \begin{pmatrix} x_1 x & x_2 x & \cdots & x_n x \\ x_1 & x_2 & \cdots & x_n \end{pmatrix}
\]

\(\sum_{i,j,k} \) is stochastic

\(y_j = \sum_{i,j} x_i y_i \) is stochastic

\(\sum x^2 = \sum x_j y_j \) is stochastic

\(f(x) = \alpha \sum x^2 + (1-\alpha)v \) is stochastic
\[\alpha \frac{1}{2} x^2 + (1 - \alpha) \mathbb{1} = x \]

\(f(x) \) is stochastic or long as \(x \) is stochastic.

Theorem (Brouwer fixed point):

Let \(g : K \rightarrow K \) be a smooth function on a compact convex set \(K \). Then there exists \(x \in K \) such that \(g(x) = x \).

Proof: For \(K = [0, 1] \)

\[h(x) = g(x) - x \]

\(h(0) \neq 0 \) \(\Rightarrow \) \(g(0) = y \)
\(K = \{ w \in \mathbb{R}^n \mid \sum w = 1, w \geq 0 \} \)

\(f : K \to K \)

\(f(x) = \alpha \frac{P}{2} x^2 + (1 - \alpha) v \)

\(\text{BFP} \Rightarrow \exists x \text{ such that} \)

\(\alpha \frac{P}{2} x^2 + (1 - \alpha) v = x \)

Can we actually compute a solution?

Matrix

\(x_{k+1} = \alpha \frac{P}{2} x_k + (1 - \alpha) v \)

Tensor

\(x_{k+1} = f(x_k) = \alpha \frac{P}{2} x_k^2 + (1 - \alpha) v \)
Theorem (Gleich, Lim, Yu)

if $\alpha < \frac{1}{2}$

- * converges (again, exponential)

- solution $\alpha P_1 x^2 + (1-\alpha) v = x$

 is unique

if $\alpha \geq \frac{1}{2}$

- * doesn't necessarily converge

- solution may not be unique
Hypergraph eigenvector centrality
(Benson 2019)

Graph eigenvector centrality

\[Ax = \lambda_1 x \quad x > 0 \]

\[x_i = \gamma \sum_{j : (i, j) \in E} x_j \]

\[\lambda_1 = \frac{1}{\gamma} \]

Theoretical tool:
Perron-Frobenius theorem

power of node i
prop. to powers of all such j, k
$x_i = \gamma \sum_{(i;j;k)} x_j x_k$

$\Rightarrow A x^2 = \frac{1}{\gamma} x$

2. $x_i^2 = \gamma \sum_{(i;j;k)} x_j x_k$

$\Rightarrow A x^2 = \frac{1}{\gamma} x^2$

$[x^2]_i = x_i$

H-eigenvector of A
\[x_i = \sum_{(i,j,k)} x_j + x_k \]

\[\Rightarrow Wx = \frac{1}{2\pi} x \]

\[W_{ij} = \# \text{ of } k \text{ such that } A_{ijk} = 1 \]

\[W = \sum_{k} A_{ijk} \]

Can apply P-F like last time

\[\Rightarrow \text{unique } x > 0 \text{ such that } Wx = \lambda_1 x \]

\[\lambda_1 > 0 \]
\(A x^2 = \lambda x \) { also want } \(A x^2 = \lambda x^2 \) \(x > 0 \)

Start with H

Definition: \(A \) is irreducible if \(W \) (\(W = \Sigma A_{i,j} \)) induces a connected graph

Theorem: If \(A \) is irreducible and nonnegative, then exists unique \(\lambda > 0, x > 0 \) such that

\(A x^2 = \lambda x^2 \)
any other eigenvalue λ' has $|\lambda'| \leq 1$

\Rightarrow this gives us the centrality vector

Can we compute it? Yes! (Ng, Qi, Zhou 2009)

\[y_k = A^2 x_k \]

\[x_{k+1} = \frac{y_k}{\sqrt{\|y_k\|_2}} \]

entry-wise $\sqrt{}$
2-eigenvector centrality

Want:

\[A x^2 = \lambda x \]

\[\lambda > 0, \ x > 0 \]

Theorem: if \(A \) is irreducible, then there exists \(\lambda > 0, x > 0 \) such that \(A x^2 = \lambda x \)

but...

- NP-hard to compute
- could be another \(\lambda' > 0, y > 0 \) such that \(A y^2 = \lambda' y \)
if we can compute some $\lambda > 0$, $x > 0$ such that

\[A x^2 = \lambda x \]

then we have tensor Z-eigenvector centrality vector

Options:

- worst-case exponential time algorithms
- heuristics that tend to work very well in practice