1. Consider the Lax-Friedrichs method for a scalar conservation law \(u_t = -(f(u))_x \). Show that Lax-Friedrichs is actually second-order for a modified PDE \(u_t = -(f(u))_x + T \), where \(T \) is a sum of some other terms that you must determine, all of which should be \(O(k) \). The formula for \(T \) will involve \(h \) and \(k \). In your analysis, assume \(k/h = \lambda \), where \(\lambda \) is a fixed constant.

If you carry this out correctly, \(T \) will have three terms, two of which are multiples \(u_{xx} \).

If the two latter terms are added to arrive at a single term \(Au_{xx} \), is the coefficient \(A \) positive or negative? Take into account the CFL condition.

[Hint: Plug in the exact solution and carry out a Taylor series expansion. Figure out how to define \(u_t \) (i.e., figure out what \(T \) has to be) in such a way that the \(ku_t \) term on the left-hand side of the Taylor expansion can cancel the \(O(k^2) \) term on the left-hand side and the \(O(h^2) \) term on the right-hand side.]
4. Implement (in Matlab) the Lax-Friedrichs and Godunov method for Burgers’ equation with Riemann initial condition

\[u_0(x) = \begin{cases}
2 & \text{for } x < 0, \\
1 & \text{for } x \geq 0.
\end{cases} \]

Use spatial interval \([-1, 1]\) and integrate up to \(T = 0.2\). Try various values of \(k\) and \(h\), ensuring that the CFL condition is satisfied. Use the obvious Dirichlet boundary conditions (2 at the left, 1 at the right).

Develop a heuristic to measure the width of the shock. Determine experimentally how much Lax-Friedrichs smears the shock (as a function of \(k\)), and how much Godunov smears the shock.

Hand in listings of all m-files, at least two interesting plots, and a paragraph of conclusions.