1 Big ticket items

1.1 Linear algebra and calculus
- Linear algebra background (abstract and concrete)
 - Vectors, spaces, subspaces, bases
 - Interpreting matrices: operators, mappings, quadratic forms
 - Canonical forms
- Calculus with matrices
 - Sensitivity analysis and conditioning
 - Variational notation for derivatives
 - Optimization with quadratics
 - Lagrange multipliers and constraints

1.2 Matrix algebra
- Ways to write matrix-matrix products
- Blocked matrices and blocked algorithms
- Graph structures: sparse, diagonal, triangular, Hessenberg, etc
- LA structures: symmetric, skew, orthogonal, etc
- Other structure: Toeplitz, Hankel, other special matrices

1.3 The big problems

\[
\begin{align*}
Ax &= b \\
\text{minimize} & \quad \|Ax - b\|^2 \\
Ax &= x\lambda
\end{align*}
\]
1.4 The big factorizations
- LU and company ($LDLT$ and Cholesky)
- QR (economy and full)
- SVD (economy and full)
- Schur factorization
- Symmetric eigendecomposition

1.5 Iterations
- Iterative refinement
- Stationary iterations (Jacobi, Gauss-Seidel, etc)
- Krylov subspace definition
- Approximation from a subspace and Galerkin
- Characterization of CG and GMRES

1.6 Philosophical odds and ends
- Identifying the right structure matters a lot
- We need both algebra and analysis
- When you don’t know what else to do... eigenvalues or SVD
- I differentiate five expressions before breakfast!

2 What else?
There is a lot that I wish I could get to in a course like this. If it were a two semester course, perhaps I would! Three things come immediately to mind.

- LA for data science (c.f. CS 6241)
 - Non-negative matrix factorizations
- Tensors and tensor factorizations
- More on factorization-based methods in stats/ML
- The linear algebra of multivariate normals
- Connections to convex optimization: active sets, quadratic programming, etc

- Iterative methods (c.f. CS 6220)
 - More on multigrid and domain decomposition
 - More on other “data-sparse” matrices
 - More on elliptic PDEs, integral equations, etc

- Eigensolvers
 - More on eigensolvers (especially iterative ones)
 - Much more on perturbation theory and sensitivity analysis
 - Matrix functions, and complex analysis connections
 - Connections to control theory
 - More on orthogonal polynomials

But there is always more to learn. If the course gave you a starting point to thinking about other corners of linear algebra that you care about for your research, then it was a success.

I enjoyed the class this semester. I hope you did as well.