1 Minimax and interlacing

The Rayleigh quotient is a building block for a great deal of theory. One step beyond the basic characterization of eigenvalues as stationary points of a Rayleigh quotient, we have the Courant-Fischer minimax theorem:

Theorem 1. If $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, then we can characterize the eigenvalues via optimizations over subspaces \mathcal{V}:

$$
\lambda_k = \max_{\dim \mathcal{V} = k} \left(\min_{0 \neq v \in \mathcal{V}} \rho_A(v) \right) = \min_{\dim \mathcal{V} = n - k + 1} \left(\max_{0 \neq v \in \mathcal{V}} \rho_A(v) \right).
$$

Proof. Write $A = U\Lambda U^*$ where U is a unitary matrix of eigenvectors. If v is a unit vector, so is $x = U^*v$, and we have

$$
\rho_A(v) = x^*\Lambda x = \sum_{j=1}^n \lambda_j |x_j|^2,
$$

i.e. $\rho_A(v)$ is a weighted average of the eigenvalues of A. If \mathcal{V} is a k-dimensional subspace, then we can find a unit vector $v \in \mathcal{V}$ that satisfies the $k - 1$ constraints $(U^*v)_j = 0$ for $j = 1$ through $k - 1$ (i.e. v is orthogonal to the invariant subspace associated with the first $k - 1$ eigenvectors). For this v, $\rho_A(v)$ is a weighted average of $\lambda_k, \lambda_{k+1}, \ldots, \lambda_n$, so $\rho_A(v) \leq \lambda_k$. Therefore,

$$
\max_{\dim \mathcal{V} = k} \left(\min_{0 \neq v \in \mathcal{V}} \rho_A(v) \right) \leq \lambda_k.
$$

Now, if \mathcal{V} is the range space of the first k columns of U, then for any $v \in \mathcal{V}$ we have that $\rho_A(v)$ is a weighted average of the first k eigenvalues, which attains the minimal value λ_k when we choose $v = u_k$. \qed

One piece of the minimax theorem is that given any k-dimensional subspace \mathcal{V}, the smallest value of the Rayleigh quotient over that subspace is a **lower** bound on λ_k and an **upper** bound on λ_{n-k+1}. Taking this one step further, we have the Cauchy interlace theorem, which relates the eigenvalues of a block Rayleigh quotient to the eigenvalues of the corresponding matrix.
Theorem 2. Suppose A is real symmetric (or Hermitian), and let V be a matrix with m orthonormal columns. Then the eigenvalues of W^*AW interlace the eigenvalues of A; that is, if A has eigenvalues $\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_n$ and W^*AW has eigenvalues β_j, then

$$\beta_j \in [\alpha_{n-m+j}, \alpha_j].$$

Proof. Suppose $A \in \mathbb{C}^{n \times n}$ and $L \in \mathbb{C}^{m \times m}$. The matrix W maps \mathbb{C}^m to \mathbb{C}^n, so for each k-dimensional subspace $\mathcal{V} \subseteq \mathbb{C}^m$ there is a corresponding k-dimensional subspace of $W\mathcal{V} \subseteq \mathbb{C}^n$. Thus,

$$\beta_j = \max_{\dim \mathcal{V} = k} \left(\min_{0 \neq v \in \mathcal{V}} \rho_L(v) \right) = \max_{\dim \mathcal{V} = k} \left(\min_{0 \neq v \in W\mathcal{V}} \rho_A(v) \right) \leq \alpha_k$$

and similarly

$$\beta_j = \min_{\dim \mathcal{V} = m-k+1} \left(\max_{0 \neq v \in \mathcal{V}} \rho_L(v) \right) = \min_{\dim \mathcal{V} = m-k+1} \left(\max_{0 \neq v \in W\mathcal{V}} \rho_A(v) \right) \geq \alpha_{n-m+k}$$

Another application of the minimax theorem is due to Weyl: if we write $\lambda_k(A)$ for the kth largest eigenvalue of a symmetric A, then for any symmetric A and E,

$$|\lambda_k(A + E) - \lambda_k(A)| \leq \|E\|_2.$$

A related theorem is the Wielandt-Hoffman theorem:

$$\sum_{i=1}^n (\lambda_i(A + E) - \lambda_i(A))^2 \leq \|E\|_F^2.$$

Both these theorems provide strong information about the spectrum relative to what we have in the nonsymmetric case (e.g. from Bauer-Fike). Not only do we know that each eigenvalue of $A + E$ is close to some eigenvalue of A, but we know that we can put the eigenvalues of A and $A + E$ into one-to-one correspondence. So for the eigenvalues in the symmetric case, small backward error implies small forward error!
As an aside, note that if \hat{v} is an approximate eigenvector and $\hat{\lambda} = \rho_A(\hat{v})$ for a symmetric A, then we can find an explicit form for a backward error E such that

$$(A + E)\hat{v} = \hat{v}\hat{\lambda}.$$

by evaluate the residual $r = Av - v\lambda$ and writing $E = rv^* + vr^*$. So in the symmetric case, a small residual implies that we are near an eigenvalue. On the other hand, it says little about the corresponding eigenvector, which may still be very sensitive to perturbations if it is associated with an eigenvalue that is close to other eigenvalues.

2 Sensitivity of invariant subspaces

The eigenvalues of a symmetric matrix are perfectly conditioned. What of the eigenvectors (or, more generally, the invariant subspaces)? Here the picture is more complex, and involves spectral gaps. Suppose u is an eigenvector of A associated with eigenvalue μ, and the nearest other eigenvalue is at least γ apart. Then there is a perturbation E with $\|E\|_2 = \gamma/2$ for which the eigenvalue at μ and the nearest eigenvalue coalesce.

A more refined picture is given by Davis and Kahan and covered in many textbooks since (I recommend those of Parlett and of Stewart). Let $AU = U\Lambda$ and $\hat{A}\hat{U} = \hat{U}\hat{\Lambda}$, and define $R = \|\hat{A}U - U\Lambda\|$. Then

$$\|\sin(\Theta(U,\hat{U}))\|_F \leq \frac{\|R\|_F}{\delta}$$

where δ is the gap between the eigenvalues in Λ and the rest of the spectrum. If we enforce a gap between an interval containing the eigenvalues in Λ and the rest of the spectrum, we can change all the Frobenius norms into 2-norms (or any other unitarily invariant norm). The matrix $\sin(\Theta(U,\hat{U}))$ is the matrix of sines of the canonical angles between U and \hat{U}; if both bases are normalized, the cosines of these canonical angles are the singular values of $U^*\hat{U}$.

The punchline for this is that an eigenvector or invariant subspace for eigenvalues separated by a large spectral gap from everything else in the spectrum is nicely stable. But if the spectral gap is small, the vectors may spin like crazy under perturbations.
3 Sylvester’s inertia theorem

The inertia $\nu(A)$ is a triple consisting of the number of positive, negative, and zero eigenvalues of A. Sylvester’s inertia theorem says that inertia is preserved under nonsingular congruence transformations, i.e. transformations of the form

$$M = V^*AV$$

where V is nonsingular (but not necessarily unitary).

Congruence transformations are significant because they are the natural transformations for quadratic forms defined by symmetric matrices; and the invariance of inertia under congruence says something about the invariance of the shape of a quadratic form under a change of basis. For example, if A is a positive (negative) definite matrix, then the quadratic form

$$\phi(x) = x^*Ax$$

defines a concave (convex) bowl; and $\phi(Vx) = x^*(V^*AV)x$ has the same shape.

As with almost anything else related to the symmetric eigenvalue problem, the minimax characterization is the key to proving Sylvester’s inertia theorem. The key observation is that if $M = V^*AV$ and A has k positive eigenvalues, then the minimax theorem gives us a k-dimensional subspace W_+ on which A is positive definite (i.e. if W is a basis, then $z^*(W^*AW)z > 0$ for any nonzero z). The matrix M also has a k-dimensional space on which it is positive definite, namely $V^{-1}W$. Similarly, M and A both have $(n-k)$-dimensional spaces on which they are negative semidefinite. So the number of positive eigenvalues of M is k, just as the number of positive eigenvalues of A is k.