1 Sparse Orthogonal Matrix Set-Up

With the notation $e_i = I_3(:, i)$ here is a basis for the subspace of 3x3 symmetric matrices:

$$S_{11} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = e_1 e_1^T$$

$$S_{21} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = e_2 e_1^T + e_1 e_2^T$$

$$S_{31} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} = e_3 e_1^T + e_1 e_3^T$$

$$S_{22} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = e_2 e_2^T$$

$$S_{32} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = e_3 e_2^T + e_2 e_3^T$$

$$S_{33} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = e_3 e_3^T$$

and a basis for the subspace of 3x3 skew-symmetric matrices:

$$T_{21} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = e_2 e_1^T - e_1 e_2^T$$

$$T_{31} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} = e_3 e_1^T - e_1 e_3^T$$

$$T_{32} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = e_3 e_2^T - e_2 e_3^T$$

The matrix $Q_{3,3} \in \mathbb{R}^{9 \times 9}$ is obtained by normalizing these nine matrices so that they have unit Frobenius norm and then aggregating their vec’s:

$$Q_{3,3} = [\text{vec}(S_{11}) \ \text{vec}(\alpha S_{21}) \ \text{vec}(\alpha S_{31}) \ \text{vec}(S_{22}) \ \text{vec}(\alpha S_{32}) \ \text{vec}(S_{33}) | \ \text{vec}(\alpha T_{21}) \ \text{vec}(\alpha T_{31}) \ \text{vec}(\alpha T_{32})]$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 & 0 & 0 & \alpha & 0 \\ 0 & 0 & \alpha & 0 & 0 & 0 & 0 & 0 & \alpha \\ 0 & 0 & 0 & \alpha & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -\alpha & 0 & 0 \\ 0 & 0 & 0 & 0 & \alpha & 0 & 0 & 0 & \alpha \\ 0 & 0 & \alpha & 0 & 0 & 0 & 0 & -\alpha & 0 \\ 0 & 0 & 0 & 0 & \alpha & 0 & 0 & 0 & -\alpha \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} = [Q_{sym} \ | \ Q_{skew}] \quad \alpha = 1/\sqrt{2}. $$

This is a sparse orthogonal matrix.

For general n, $Q_{n,n} = [Q_{sym} \ Q_{skew}] \in \mathbb{R}^{n^2 \times n^2}$. The columns of the n^2-by-$n(n+1)/2$ matrix Q_{sym} are associated the S_{ij}. The mapping of the (i,j) basis matrices S_{ij} to the columns of Q_{sym} is as follows:

$$(1, 1), (2, 1), \ldots, (n, 1), (2, 2), (3, 2), \ldots, (n, 2), \ldots, (n-1, n-1), (n, n-1), (n, n).$$
The columns of the \(n^2 \)-by-\(n(n-1)/2 \) matrix \(Q_{skew} \) are associated the \(T_{ij} \). The mapping of the \((i,j)\) basis matrices \(T_{ij} \) to the columns of \(Q_{skew} \) is as follows:

\[
(2,1), (3,1), \ldots, (n,1), (3,2), (4,2), \ldots, (n,2), \ldots, (n-1,n-1), (n,n-1).
\]

Implement the following MATLAB function:

```matlab
function Q = Qnn(n)
% n is a positive integer
% Q is the n^2-by-n^2 orthogonal matrix Q_{n,n} in sparse format.

% The efficiency of your implementation will be a major factor in the grading. Use sparse intelligently. Submit Qnn to CMS.
```

2 Closest Kronecker Product to a Block Tridiagonal Matrix

Suppose \(A \) is an \(n_1 \)-by-\(n_1 \) block matrix with \(n_2 \)-by-\(n_2 \) blocks, e.g.,

\[
A = \begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{bmatrix}.
\]

Consider the problem of minimizing

\[
\phi(B, C) = \| A - B \otimes C \|_F
\]

where \(B \in \mathbb{R}^{n_1 \times n_1} \) and \(C \in \mathbb{R}^{n_2 \times n_2} \). The solution procedure is outlined in GVL4 §12.3.6. It involves computing the largest singular value and vectors of an \(n_1^2 \)-by-\(n_2^2 \) matrix \(\tilde{A} \) whose rows are the vec's of the blocks, e.g.,

\[
\tilde{A} = \begin{bmatrix}
 Vec(A_{11})^T \\
 Vec(A_{21})^T \\
 Vec(A_{31})^T \\
 Vec(A_{41})^T \\
 Vec(A_{12})^T \\
 Vec(A_{22})^T \\
 Vec(A_{32})^T \\
 Vec(A_{42})^T \\
 Vec(A_{13})^T \\
 Vec(A_{23})^T \\
 Vec(A_{33})^T \\
 Vec(A_{43})^T \\
 Vec(A_{14})^T \\
 Vec(A_{24})^T \\
 Vec(A_{34})^T \\
 Vec(A_{44})^T
\end{bmatrix}.
\]

In particular, if \(\sigma_1 \) is the largest singular value of \(\tilde{A} \) and \(u_1 \) and \(v_1 \) the left and right singular vectors, then

\[
B_{opt} = \sqrt{\sigma_1} \cdot \text{reshape}(u_1, n_1, n_1) \quad C_{opt} = \sqrt{\sigma_1} \cdot \text{reshape}(v_1, n_2, n_2).
\]

In this problem you are to implement this procedure for the case when \(A \) is block tridiagonal with sparse blocks:
function \([B, C] = \text{NearestKP}(A, n1, n2)\)
\%
\% A (in sparse format) is an \(n1\times n1\) block tridiagonal matrix with \(n2\times n2\) blocks.
\%
\% B (\(n1\times n1\)) and C (\(n2\times n2\)) minimize \(\text{norm}(A - \text{kron}(B, C), 'fro')\) and are both
\%
\% in full format.

You may want to make use of \texttt{svds} and \(\hat{A}\)'s special structure. Submit \texttt{NearestKP} to CMS.

3 A Max Trace Problem

Let \(\text{tr}(A)\) denote the trace of a square matrix \(A \in \mathbb{R}^{n \times n}\):

\[
\text{tr}(A) = \sum_{i=1}^{n} a_{ii}
\]

Here are some facts about the trace function:

1. If \(F, G \in \mathbb{R}^{n \times n}\), then \(\text{tr}(F + G) = \text{tr}(F) + \text{tr}(G)\).
2. If \(\alpha \in \mathbb{R}\) and \(F \in \mathbb{R}^{n \times n}\), then \(\text{tr}(\alpha F) = \alpha \text{tr}(F)\).
3. If \(F, G \in \mathbb{R}^{n \times r}\), then \(\text{tr}(FG^T) = \text{tr}(G^TF)\).
4. If \(A \in \mathbb{R}^{n \times n}\) is symmetric with eigenvalues \(\lambda_1 \geq \cdots \geq \lambda_n\) and \(U \in \mathbb{R}^{n \times r}\) has orthonormal columns, then

\[
\text{tr}(U^T A U) \leq \lambda_1 + \cdots + \lambda_r
\]

and the upper bound is attained if \(\text{ran}(U)\) is an invariant subspace associated with \(\lambda_1, \ldots, \lambda_r\).

Implement a function \([Q, r, \phiMax] = \text{TwoMatTrace}(A1, A2)\) that maximizes the objective function

\[
\phi(Q, r) = \text{tr}(Q_1^T A_1 Q_1) + \text{tr}(Q_2^T A_2 Q_2)
\]

where \(A_1 \in \mathbb{R}^{n \times n}\) and \(A_2 \in \mathbb{R}^{n \times n}\) are given symmetric matrices, \(Q \in \mathbb{R}^{n \times n}\) is orthogonal, and \(r\) is an integer that satisfies \(0 \leq r \leq n\). To be clear about the “edge” cases:

\[
\phi(Q, 0) = \text{tr}(Q_1^T A_2 Q_2) \quad \phi(Q, n) = \text{tr}(Q_2^T A_1 Q).
\]

The optimum \(Q\) should be returned in \(Q\), the optimum \(r\) should be returned in \(r\), and \(\phiMax\) should return the optimum value of \(\phi\). Submit \texttt{TwoMatTrace} to CMS.

4 Limiting Probabilities

Suppose \(Q \in \mathbb{R}^{n \times n}\) has the property that its diagonal entries are negative, its off-diagonal entries are strictly positive, and its column sums are zero. It can be shown that if

\[
F(t) = e^{Qt}
\]

then regardless of \(t\), all the entries in \(F(t)\) are nonnegative and its column sums are one. That is, \(F(t)\) is stochastic. Its entries are probabilities and the probabilities in each of its columns sum to one.

It can be shown that the diagonal entries in \(e^{Qt}\) converge:

\[
\lim_{t \to \infty} [F(t)]_{ii} = p_i.
\]

Implement a function \(p = \text{pLimits}(Q)\) that returns the column vector of limiting diagonal probabilities associated with \(e^{Qt}\). You are NOT allowed to use \texttt{expm}. Submit \texttt{pLimits} to CMS.
5 A Fast Matrix-Vector Multiply

Suppose \(p, q, x \in \mathbb{R}^n \) and set \(A = \text{triu}(pq^T) \). The matrix vector product \(y = Ax \) can be computed with \(O(n) \) work and here is why:

\[
y = Ax = \begin{bmatrix} p_1q_1 & p_1q_2 & p_1q_3 & p_1q_4 \\
0 & p_2q_2 & p_2q_3 & p_2q_4 \\
0 & 0 & p_3q_3 & p_3q_4 \\
0 & 0 & 0 & p_4q_4 \end{bmatrix} \begin{bmatrix} x_1 \\
x_2 \\
x_3 \\
x_4 \end{bmatrix} = \begin{bmatrix} p_1 & p_1 & p_1 \\
0 & p_2 & p_2 & p_2 \\
0 & 0 & p_3 & p_3 \\
0 & 0 & 0 & p_4 \end{bmatrix} \begin{bmatrix} q_1x_1 \\
q_2x_2 \\
q_3x_3 \\
q_4x_4 \end{bmatrix}
\]

You might want to review §12.2.1-12.2.4 in GVL4. Possibly using these ideas, implement the following function so that it performs as specified:

```matlab
function y = FastProd(P,Q,R,S,d,x)
% P,Q,R, and S are n-by-r, n is an integral multiple of r, and n>>r.
% d and x are column n-vectors
% y = Ax where A = tril(R*S',-1) + diag(d) + triu(P*Q',1)
```

Submit FastProd to CMS.