CS 6210 Assignment 5 Due: 11/13/15 (Fri) at 6pm

Scoring for each problem is on a 0-to-5 scale (5 = complete success, 4 = overlooked a small detail, 3 = good job on half the problem, 2 = OK job on half the problem, 1 = germ of a relevant solution idea, 0 = missed the point of the problem.) Independent of this, one point will be deducted for insufficiently commented code. Test code and related material are posted on the course website http://www.cs.cornell.edu/courses/cs6210/2015fa/. All solution M-Files must be submitted through the CMS system. You are allowed to discuss background issues with other students, but the codes you submit must be your own.

Topics: Eigenvalue Problems for symmetric, skew-symmetric and orthogonal matrices, Tridiagonal Methods, Jacobi Methods, the Lanczos Method.

1 An Orthogonal Matrix Eigenvalue Problem

Complete the following function so that it performs as specified:

```matlab
function k = nEigs(U,alfa,beta)
    % U is an nxn real orthogonal matrix.
    % If -1 < alfa < beta < 1, then k estimates the number of U's eigenvalues that
    % have real parts in the interval [alfa,beta].
    % If alfa = beta = 1, then k estimates the number of U's eigenvalues that
    % are equal to one.
    % If alfa = beta = -1, then k estimates the number of U's eigenvalues that
    % are equal to minus one.
    % All other alfa-beta combinations are illegal, e.g., alfa = 0, beta = 1

Note that the eigenvalues of $U$ are on the unit circle. It follows that if $Uz = \lambda z$ then $(\lambda + 1/\lambda)/2 = \text{Re}(\lambda)$ is an eigenvalue of $A = (U + U^{-1})/2 = (U + U^T)/2$, a symmetric matrix. Make effective use of hess and the Sturm sequence function nLess that is provided. To force issues, your implementation is NOT allowed to use schur or eig or any other MATLAB eigensolver. Throughout your implementation you are “allowed” to set a matrix element to zero if its absolute value is $10^{-12}$ or less. An interesting way to generate test examples is $[U,R] = qr(randn(n,p))$ with $p<n$. Submit nEigs to CMS.

2 3-by-3 Eigenvalue decomposition for Skew-Symmetric Matrices

If $A \in \mathbb{R}^{n \times n}$ is skew-symmetric, then $A^T = -A$ and all its eigenvalues are on the imaginary axis. The real Schur decomposition states that there is a real orthogonal matrix $Q$ such that $Q^T AQ = \text{diag}(D_1, \ldots, D_p)$ where each $D_k$ is either the 1-by-1 matrix 0 or a 2-by-2 matrix of the form

$$D_k = \begin{bmatrix} 0 & \mu_k \\ -\mu_k & 0 \end{bmatrix}$$

Note that in the latter situation $\lambda(D_k) = \{ +i\mu_k, -i\mu_k \}$. Also observe that if $n$ is odd then there must be a nonzero real vector $z$ so $Az = 0$. (Why?) Complete the following function so that it performs as specified:

```matlab
function Q = RealSchur3(A)
 % A is a 3x3 real skew-symmetric matrix.
 % Q is a 3x3 orthogonal matrix so that Q'*A*Q has the form

 % Q'*A*Q = [0 0 ; 0 0 ; 0 0]

 Hint. Find a null vector z for A and a Householder matrix P that can zero all but one entry of z. What can you say about the structure of P^TAP? You are not allowed to use eig or schur. You are free to use House (see A4). Submit RealSchur3 to CMS.
3 A Jacobi Procedure for Skew Symmetric Matrices

Read about the cyclic Jacobi idea in §8.5.4 and about the block Jacobi idea in §8.5.6. In this problem you are to implement a cyclic block Jacobi procedure for skew-symmetric matrices:

$$\text{function } [Q, D, \text{BlockOffTrace}] = \text{SkewJacobi}(A, \text{tol}, \text{MaxNumSweeps})$$

\% A is an nxn skew symmetric matrix and n = 2m+1.
\% Q is nxn orthogonal.
\% D is nxn and block diagonal with 1x1 and 2x2 diagonal blocks.
\% BlockOff(D) <= tol*norm(A,'fro') where D = Q'*A*Q.
\% BlockOffTrace is a column vector with the property that BlockOffTrace(k) is
\% the value of BlockOff(A) after k-1 sweeps.

The procedure should be based on this blocking:

$$A = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1m} & A_{1,m+1} \\
A_{21} & A_{22} & \cdots & A_{2m} & A_{2,m+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
A_{m1} & A_{m2} & \cdots & A_{mm} & A_{m,m+1} \\
A_{m+1,1} & A_{m+1,2} & \cdots & A_{m+1,m} & A_{m+1,m+1}
\end{bmatrix}.$$

The blocks $A_{1,m+1}, \ldots, A_{m,m+1}$ are 2-by-1. The blocks $A_{m+1,1}, \ldots, A_{m+1,m}$ are 1-by-2. The block $A_{m+1,m+1}$ is 1-by-1. All other blocks are 2-by-2.

If a 2-by-2 (block) subproblem involves a block from the last block column or block row, then a 3-by-3 real Schur decomposition needs to be computed and you should use \text{RealSchur3}. If not, then a 4-by-4 real Schur decomposition needs to be found and you should use the \text{Matlab schur} function.

After a sweep you should evaluate the comparison

$$\text{BlockOff}(A) = \sqrt{\sum_{i\neq j} \| A_{ij} \|^2_F} \leq \text{tol} \cdot \| A \|_F.$$

The iteration should terminate if this is true or if the number of completed sweeps equals \text{MaxNumSweeps}. Submit \text{SkewJacobi} to CMS.

4 Eigenvalues of Diagonal + Rank-1 Via Lanczos

The eigenvalues (and eigenvectors) of a symmetric matrix that is diagonal-plus-rank-one is an $O(n^2)$ computation. See GVL4 §8.4.3. The method outlined there involves a highly-structured rational function whose roots are the desired eigenvalues. In this problem you are to implement a Lanczos-based procedure for computing specified subsets of the eigenvalues:

$$\text{function } \text{eValues} = \text{SpecialEig}(d,v,k,\text{what})$$

\% d is a column n-vector with distinct nonzero entries
\% v is a column n-vector with nonzero entries
\% k is a positive integer that satisfies 1<=k<n
\% Let A = diag(d) + vv'.
\% If \text{what} equals ‘SA’, then \text{eValues} is a column k-vector comprised
\% of the k algebraically smallest eigenvalues of A.
\% If \text{what} equals ‘LA’, then \text{eValues} is a column k-vector comprised
\% of the k algebraically largest eigenvalues of A.
\% If \text{what} equals ‘SM’, then \text{eValues} is a column k-vector comprised
\% of the k smallest eigenvalues of A in magnitude
\% If \text{what} equals ‘LM’, then \text{eValues} is a column k-vector comprised
\% of the k largest eigenvalues of A in magnitude.
\% In each case, eValues(1) < eValues(2) < \ldots < eValues(k).

You are to make effective use \text{eigs} for all eigenvalue computations. Start with \text{help eigs} and figure out the proper calling sequence. Submit \text{SpecialEig} to CMS. A test script P4Grade is available on the course website.