Traffic Engineering: Network Geometry and Design

Alan Shieh ashieh@cs.cornell.edu

Routing Design in Operational Networks: A Look from the Inside

David A. Maltz, Geoffrey Xie, Jibin Zhan, Hui Zhang, Gısli Hjalmtysson, Albert Greenberg

Goals and motivation

- Routing design is important, but complicated
- Global system view is essential

High-level challenges

- Real networks are complex systems of interacting routing algorithms
- Configuration information is localized
- Wide range of implementations for the same policy
 - Backbone, enterprise, filtering, ...

Methodology

- Empirical analysis of operational networks
 - Extract features from configuration files
- Construct graphs of global relationships
 - Support different goals with different abstraction levels

interface EtherastO

1 ip address 60:28.175.144 255.255.255.128

2 ip accessgroup 128 is

5 interface Serial/0.5 point-to-point

6 ip address 60:28.126.255.255.255.255.255

2 interface Serial/0.5 point-to-point

8 interface Serial/0.5 point-to-point

9 interface Serial/0.5 point-to-point

10 interface Max1/0 point-to-point

11 ip address 60:28.126.07 255.255.255.255

2 interface was 10 point-to-point

12 ip address 60:28.126.07 255.255.255.255

2 interface was 10 point-to-point

15 redistribute cogn 64

16 redistribute connected matric-type I submets

16 redistribute connected matric-type I submets

17 redistribute sign 64700 active I submets

18 redistribute connected matric-type I submets

19 redistribute sign 64700 active I submets

20 redistribute sign 64700 active I submets

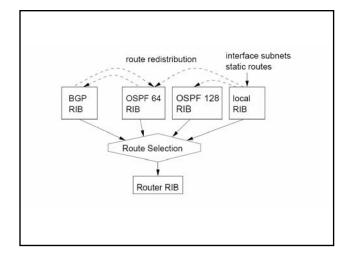
21 distribute-list 64 in Bernal/0.5

22 distribute-list 64 in Bernal/0.5

23 redistribute-list 64 in Bernal/0.5

24 redistribute-list 64 in Bernal/0.5

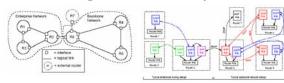
25 redistribute-list 64 in Bernal/0.5


26 redistribute-list 64 in Bernal/0.5

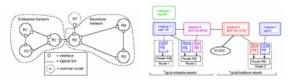
27 matghber 65:23.10.68 remote-map BaTalvitute

28 matghber 65:23.10.68 distribute-list 4 in matghber 65:23.10.61 distribute-list 4 in matghber

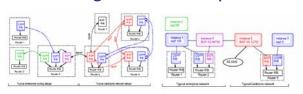
Terminology


- Router information base (RIB)
 - Protocol RIB
 - Filled by routing protocol
 - Local RIB
 - Locally generated
 - Routing RIB
 - Directs forwarding logic

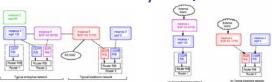
Terminology


- Interior Gateway Protocols (IGP)
 - OSPF, IS-IS, RIP, EIGRP
- BGP
 - External BGP (EBGP): Share information with peers
 - Internal BGP (IBGP): Lossless distribution of EBGP information

Routing Process Graphs


- Goal: Capture low-level interactions between routing processes on different routers
- Nodes represent RIBs
- Edges represent exchange of routes
 - Labeled with route propagation policies

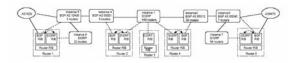
Routing Instance Graphs


- Problem: Routing process graphs grow rapidly
 - Problematic for large networks
- Routing instance graphs digest information from routing process graphs

Routing Instance Graphs

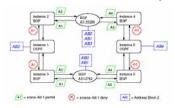
- Nodes represent instances, or collections of interacting Routing Processes
- Interaction between different routing processes running on the same routers?

Route Pathway Graphs


- Summarize interactions between instances from POV of individual router
- Search Routing Instance Graphs based on routes in Router RIB
- Ambiguity: Is this search conservative or precise?

Key implementation details

- Anonymization reduces barriers to participation
- Infer address space allocation, interior/exterior interfaces
 - Use out-of-band membership information of configuration files
 - What about out-of-band IP block assignments?


Case studies

Net5 (backbone)

- Backbone uses IGP rather than IBGP
 - Too many routers for simple IBGP mesh
 - Use clever address allocation to increase expressiveness of IGP route map

Net15 route filter analysis

- Edge labels succinctly describe policies
- Help to determine:
 - Reachability
 - Filters on BGP route injection improve IGP scalability

Practical challenges

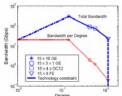
- Anonymization filter loses information
 - Configuration file design issue?
- Missing information from neighboring domains
 - Filtering from peers, side channels for BGP information, ...

Contributions

- Simple, elegant abstractions leading to practical, useful global analysis tools
- Analysis of operational networks using these tools
- Router configuration dataset

Discussion questions

Comparison/validation with global configuration tools?


A First-Principles Approach to Understanding the Internet's Router-level Topology

Lun Li, David Alderson, Walter Willinger, John Doyle

Goals

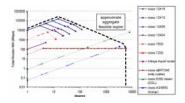
 Demonstrate problems with degreebased random graph models

Technology constraints

- Routers do not scale perfectly with respect to degree
 - Low degree: limited by per-interface capacity
 - High degree: extra overhead for switching fabric

Economic constraints

- Long-distance links are expensive
- Hierarchical multiplexing is costeffective


Pitfalls of previous work

- Measurement studies: link layer interference
 - Ethernet/optical rings increase degree
 - MPLS conflates physical multihop routes into single virtual hop
- Graph generators: shortcomings of existing metrics

Novel metrics

- Performance metric
- Likelihood metric

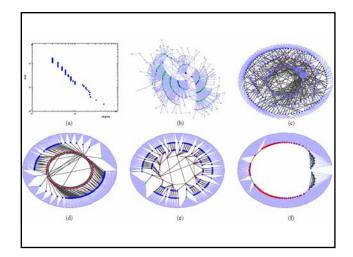
Performance metric

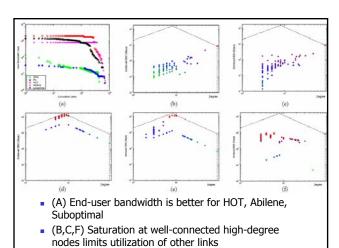
- Generate traffic demand matrix (x)
- Compute route for each pair (R)
- Compute router capacity based on degree (B)

Performance metric

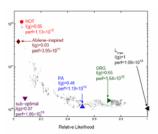
$$\max_{\alpha} \qquad \sum_{ij} \alpha x_i x_j$$

$$s.t \qquad RX \le B,$$


- Solve LP, compute aggregate bandwidth
- What about traffic engineering?

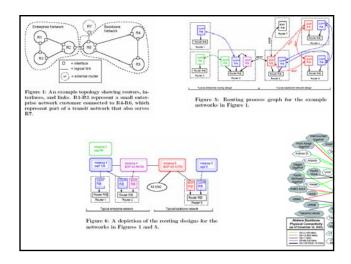

Likelihood metric

$$l(g) = (L(g) - L_{\min})/(L_{\max} - L_{\min}),$$


Evaluation

- Generic Random Graph, Preferential attachment
- Heuristically optimal topology (HOT)
 - Degree-preserving rewiring for explicit aggregation
- Abilene-inspired topology
- Suboptimal strawman

Performance vs. Likelihood


- Likely graphs have low performance
- High performance graphs are unlikely

Contributions

- Degree-based graph models do not model Internet router topology
- Domain-specific results
 - Similar class of results with specific metrics for other domains?

Discussion

Provocative critique of large bodies of work

