Network Measurement: Measuring the Path

Joy Zhang

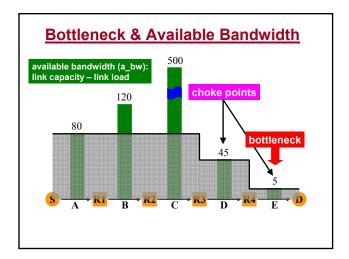
Measuring the Path

Available Bandwidth/Bottleneck

- BFind,Pathchar,Cartouche
- Pathneck

Link Capacity:

- Pathchar
- CapProbe

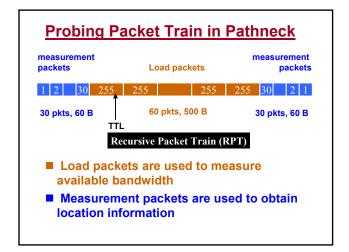

Loss/Delay/Re-ording

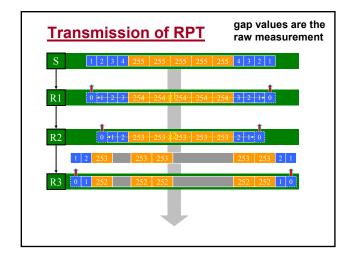
Tulip

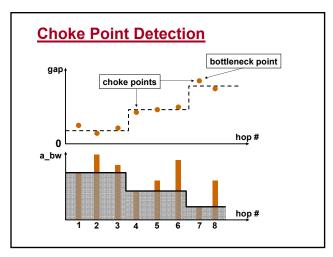
Pathneck

Pathneck is active probing tool, measuring bottleneck bandwidth:

- Low overhead (i.e., in order of 10s-100s KB)
- Fast (i.e., in order of seconds)
- Single-end control
- High accuracy




Available Bandwidth Estimation


Packet train probing

- train_rate > a_bw → train_length increases
- train_rate ≤ a_bw → train_length keeps same

Locating bottlenecks needs the packet train length info from each link

Configuration Parameters

Confidence Threshold (conf)

- Set the minimum step change in the step function
- To filter out the gap measurement noise
- Default: conf ≥ 10% available bandwidth change

Detection Rate (d_rate)

- N probings for each destination
- A hop must appear as a choke point for at least M times (d_rate ≥ M/N)
- To select the most frequent choke point
- Default: d_rate ≥ 5/10 = 50%

Patheneck: the Algorithm

- 1. Probe the same destination 10 times
- 2. conf ≥ 10% filtering
 - For each probing, only pick the choke points which satisfy conf ≥ 10% threshold
- 3. d_rate ≥ 50% filtering
 - A hop must appear as a choke point in at least 5 times to be selected
- 4. The last choke point is the bottleneck

Accuracy Evaluation

Location measurement accuracy

- Abilene experiments
- Testbed experiments on Emulab (U. of Utah)
 - Construct different types of bottleneck scenarios using real traffic trace

Bandwidth estimation accuracy

- Internet experiments on RON (MIT)
 - Compare with IGI/PTR/Pathload

Accuracy Evaluation Results

Location measurement accuracy (on Emulab)

- 100% accuracy for capacity determined bottlenecks
- 90% accuracy for load determined bottlenecks, mainly due to the dynamics of competing load
- At most 30% error with reverse path congestion

Bandwidth estimation accuracy (on RON)

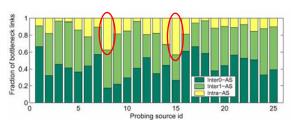
- Pathneck returns upper bound for the bottleneck available bandwidth
- On RON: consistent with available bandwidth estimation tools

Properties

- ✓ Low overhead
 - 33.6KB each probing
- ✓ Fast
 - 5 seconds for each probing
 - (1-2 seconds if RTT is known)
- ✓ Single end control
- ✓ Over 70% of accuracy

Limitations

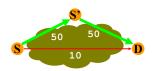
- X Can not measure the last hop
 - ✓ Fixed recently (use ICMP ECHO packets for the last hop)
- ICMP packet generation time and reverse path congestion can introduce measurement error
 - They directly change the gap values
 - Considered as measurement noise
- Packet loss and route change will disable the measurements
 - Multiple probings can help
- Can not pass firewalls
 - Similar to most other tools


1. Bottleneck Distribution

Common Assumption: bottlenecks are most likely to appear on the peering and access links, i.e., on Inter-AS links

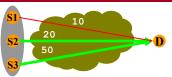
Identifying Inter/Intra-AS links

- Only use AS# is not enough (Mao et al [SIGCOMM03])
- We define Intra-AS links as links at least one hop away from links where AS# changes
- Two types of Inter-AS links: Inter0-AS & Inter1-AS links
- We identify a subset of the real intra-AS links



Up to 40% of bottleneck links are Intra-AS

Consistent with earlier results [Akella et al IMC03]


3. Avoidance — Overlay Routing

Useful metric: the estimated bandwidth on S-S'-D is larger than those on S-D

53% of 63,440 overlay attempts are useful

3. Avoidance — Multihoming

Method

- Use multiple sources in the same region to simulate multihoming
- Useful metric: if the bandwidth on the worst path can be improved by at least 50% by all other sources

78% of 42,285 multihoming attempts are useful

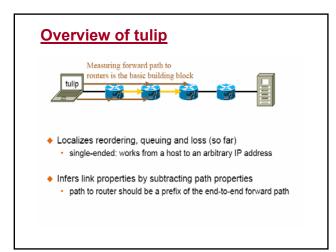
Tulip

Pinpoint location of network faults

- Packet loss
- Reordering
- Significant queuing

Real time diagnosis of faults

From the end user's perspective


More powerful than traceroute and ping

No special privileges locally or on routers

Limitation with existing diagnosis tools

- ◆SNMP stats are limited in scope
 - · can be used only inside your domain
 - granularity issues
- ping and traceroute-like tools don't deal with path asymmetry

Tools used by tulip

OOB Probes

- TTL and payload configurable
- Approximates application packets

ICMP timestamp request

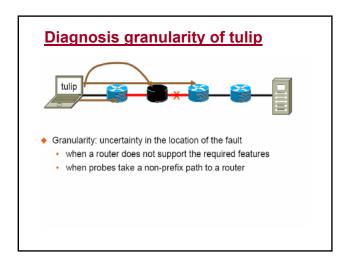
- Get a router's receive and send timestamps
- Optional feature according to RFC

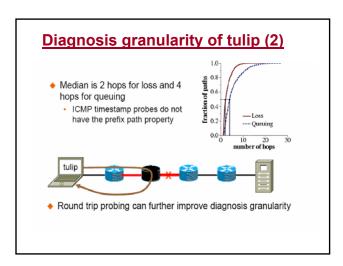
IP-ID

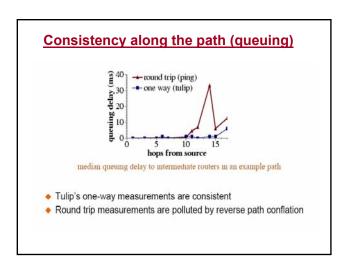
- Identify order in which packets were sent
- ID's may not be sequential or even monotonically increasing

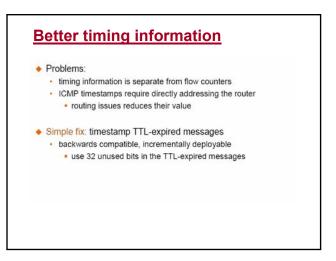
Queuing on the forward path

- Send ICMP timestamp requests at a constant rate
- Find the rate at which they arrive at the router
- Deviations are due to queuing; use the median


Loss on the forward path







- Checks losses in the forward direction
- Concludes loss only if second probe invokes id+1
- Check packet may check for ICMP rate-limiting
- Multiple loss scenarios not considered
- Breaks if data packet is fragmented
- Breaks for multiple active probes

Better counter support

- Problem:
 - IP-ID is a shared counter
 - what if all of you start using tulip?
 - the architecture suggests per-flow counters
- ♦ Simple fix: maintain N (constant) counters
 - · hash source address and probe IP-ID to pick the counter
 - backwards compatible, incrementally deployable (today, N=1)

Conclusions

- Localizes first faulty node to within ~3 hops
- Detects some packet reordering
- Faster than ping and traceroute
- How useful are the results given the accuracy and granularity?
- Conclude that loss and queuing occur close to the destination
- Suggest that routers implement ICMP timestamps and per flow counters