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are since constructive completeness with respect to full intuitionistic validity contradicts Church’s Thesis
[49,80] and implies Markov’s Principle as well [60,61).

1.7. Constructive type theory with an intersection operator

We first informally discuss evidence semantics for minimal logic.” Using evidence semantics, we introduce
the idea of uniform validity, a concept central to our results and one that is also classically meaningful.

This concept provides an effective tool for constructive semantics because we can establish uniform
validity by exhibiting even one polymorphic object among a possibly unbounded number of them that we
might find. For example, the propositional formula 4 = A is uniformly valid exactly because there is an
object in the intersection of the family of all evidence types for this formula indexed by each possible choice
of proposition A among the type of propositions, P.

We write this intersection as V[A : P|.A = A or as (A : P.A = A2 In this case, given the extensional
equality of functions, the polymorphic identity function A(z.z) is the one and only object in the intersection.
So the witness for uniform validity, like the witness for provability, can be provided by a single object,
Truth tables provide a single (expensive) piece of evidence for classical propositional logic. There are single
witnesses for the validity of all uniformly valid first-order formulas. For example, it will be clear after we
provide the evidence semantics that the polymorphic term A(h.A(z.A(p.h((z,p))))) establishes the uniform
minimal (logic) validity of

~ 3z.P(z) = Vz.(~P(z))

hence the uniform intuitionistic and classical validity as well.

Another important observation about uniform validity is that the formulas of first-order logic that are
provable intuitionistically and minimally are uniformly valid. It is also noteworthy that the law of excluded
middle is not uniformly valid in either constructive or classical evidence semantics.

The meaning of False also raises the semantic issue that leads us to first consider minimal logic and
the Friedman embedding of iFOL into mFOL. Consider the intuitionistically valid assertion Fulse = A for
any proposition A. One type theory witness for uniform validity is A(z.z), and other witnesses include any
constant function, say A(z.17). If we designate a diverging term such as div, then A(z.div) is also evidence
because the claim being made is that if z belongs to the evidence type for False, then z or 17 or div belongs
to the evidence type for A. So according to the informal semantics of intuitionistic logic, the claim False = A
is “vacuously true” since no element can be evidence for False whose standard evidence is the empty type.

From the constant function with an arbitrary evidence term evd, A(z.evd), we cannot reconstruct the
proof of False = A. The term evd might be entirely misleading. The evidence in the constructive metatheory,
CTT, for False = A provided by the CTT proof is A(z.any(z)). This evidence suggests a way to provide
an alternative semantics for False, and thus for iFOL, that avoids the issue just discussed and avoids the
need for minimal logic in our account. On the other hand, the minimal logic approach is extremely simple,
and it is well known and well studied. So we use that method first and then point out how to avoid it.

We are using the new semantics of False and iFOL in our Nuprl proof, and we will account for it much
more fully in a future article about the formalization of our proof in CTT.

In minimal logic, there is no atomic propositional constant False. Instead the arbitrary propositional
constant L is used, and its interpretation allows non-empty types as well as empty ones. For the same

" We can extend this semantics to classical logic if oracle computations are allowed to justify the law of excluded middle, Pv~P,
with an operator magic(P) [19]. We make some observations about classical logic based on this classical evidence semantics.

% We work in a predicative metatheory, therefore the type of all propositions is stratified into orders or levels, written P;. For
these results we can ignore the level of the type or just write P.
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reason, avoiding vacuous hypotheses, we require that all domains of discourse for minimal logic can be
non-empty.

1.8. Comparison to intuitionistic validity

Results of McCarty [60,61] demonstrate that unless one changes in significant ways what one means by
completeness (or by validity) or otherwise limits the collection of formulas at issue, then a completeness
theorem will be impossible to prove intuitionistically. We have opted to change the notion of validity, not
by preconceived choice, but by a discovery.

We discovered that provability is captured exactly by uniform validity, an intuitively smaller collection
of formulas than those constructively valid. Nevertheless, uniform validity is extremely useful in practice
when thinking about purely logical formulas precisely because it corresponds exactly to proof and yet is
an entirely semantic notion based on evidence semantics, the semantics that enables strong connections to
computer science.

1.9. Counterezamples

Soundness with respect to uniform validity provides a simple method of showing that formulas are not
provable by showing that they are not uniformly valid. For example, it is trivial to show that PV ~P is
not uniformly valid, e.g. to show ~ V[P : Prop].P V ~P. Suppose there were a uniform realizer, d. It would
have to be an element of the disjoint union type, thus either inr(*) or inl(x). If it is an inr term, then pick
P to be a true proposition, say T'rue, and otherwise pick it to be False. These choices show that there can
be no such uniform d. Once we have this easy result, we can show that ~~ P = P is also not uniformly
valid, e.g. we show ~ V[P : Prop]. ~~ P = P. We do this by assuming that V[P : Prop]. ~ ~P = P and
using the fact that for any P we can prove ~~ (P V ~P), thus if we could prove the uniform statement, we
could also prove V[P : Prop].P V ~P which we just showed is not uniformly true. By the same technique
we can show that Pierce’s law is not uniformly valid, e.g. ~ V[P, @ : Prop].(((P = Q) = P) = P). All the
formulas that intuitionistically imply P V ~P are provably false by this method.

We can also show that first-order Markov’s Principle (MP) is not uniformly valid; that is (Vz.(P(z) Vv
~P(z))& ~ Vz.~P(z)) = Jy.P(y) is not uniformly valid. This is because we can choose a two element
domain D with elements a and b and consider two predicates, P; and P; which have opposite values on a
and b. The existential quantifier must pick one of a or b, but it will be an incorrect choice for one of the
predicates.

2. Proof rules and proof expressions
2.1. Proof expressions

We assign denotational meaning to proofs, according to the “proofs-as-terms” principle (PAT). The rules
include constraints on the subexpressions of a proof. This is especially natural in refinement style logics
studied by Bates [6] and Griffin [31] and used in CTT and tableauz systems [12,72,27].

For each rule we provide a name that is the outermost operator of a proof expression with slots to be
filled in as the refinement style proof is developed. The partial proofs are organized as a tree generated in
two passes. The first pass is top down, driven by the user creating terms with slots to be filled in on the
algorithmic bottom up pass once the downward pass is complete. Here is a simple proof of the intuitionistic
tautology A = (B = A).

A= (B= A) by A(z.slot,(x))



