
Constructive Ancestral Logic

As a somewhat more complex example of a constructive interpretation of a logic we here present
Ancestral Logic [1]. This is a rather natural extension of first-order logic, obtained by the addition of
the transitive closure operator.

To recall, in mathematics, the transitive closure of the binary relation R on X , TCR , is the
smallest transitive relation on X that contains R. An alternative, more constructive, definition is
TCR =

⋃

n∈N
Rn where Rn is defined by R0 = R and Rn = Rn−1 ◦R for n > 0.

Ancestral logic is defined to be the extension of FOL obtained by the addition of formulas of the
form (TCx,yϕ) (u, v) for any formula ϕ, x, y distinct variables. The free occurrences of x and y in
ϕ become bound in this formula. The intended meaning of (TCx,yϕ) (u, v) is that s and t stand
in the transitive closure of the binary relation that ϕ defines on x and y. That is, intuitively, that
(TCx,yϕ) (u, v) is equivalent to the “infinite disjunction”:

ϕ(u, v) ∨ ∃w1 (ϕ(u,w1) ∧ ϕ(w1, v)) ∨ ∃w1∃w2 (ϕ(u,w1) ∧ ϕ(w1, w2) ∧ ϕ(w2, u)) ∨ . . .

What is the evidence for a TC-formula?

To constructively know (TCx,yϕ) (u, v), we construct a list of elements, say [a0, ..., an], and a list of
evidence terms [r0, ..., rn+1] such that r0 is evidence for ϕ(u, a0) and rn+1 is evidence for R(an, v)
and the intermediate terms form an evidence chain, i.e. ai is evidence for ϕ(ai−1, ai) for 0 < i ≤ n.
Therefore, formally we take the evidence type for (TCx,yϕ) (u, v) to consist of lists of the form

[〈u, a0, r0〉 , 〈a0, a1, r1〉 , ..., 〈an, v, rn+1〉]

where the above-mentioned conditions hold.

Proof System

The proof system for Ancestral logic is obtained by the addition of the followings to the system for
FOL:

1. ϕ (u, v) ⇒ (TCx,yϕ) (u, v)

2. (TCx,yϕ) (u, v)& (TCx,yϕ) (v, w) ⇒ (TCx,yϕ) (u,w)t

3. (ψ (u, v)&ψ (v, w) ⇒ ψ (u,w))& (ϕ (x, y) ⇒ ψ (x, y)) ⇒ ((TCx,yϕ) (u, v) ⇒ ψ (u, v))

In the case of number theory, instead of Axiom 13 (the induction principle of PA and HA) it suffices
to take v = 0 ∨ (TCx,yy = x′) (0, v) as an additional axiom. This is because the third TC-axiom is a
generalized induction rule that allows for the derivation of arithmetical induction.

1



How can we derive Axiom 13 in the TC system?

Take ϕ (x, y) := y = x′ and ψ (x, y) := A (x) ⇒ A (y). The first conjunct of the third TC-axiom
is of course true. The second one is true due to the assumption ∀x.A (x) ⇒ A (x′). Thus, we
have (TCx,yy = x′) (u, v) ⇒ (A (u) ⇒ A (v)). Substituting 0 for u we get (TCx,yy = x′) (0, v) ⇒
(A (0) ⇒ A (v)), from which it is straightforward to derive (TCx,yy = x′) (0, v) ⇒ A (v), by the
assumption A (0). Using the same assumption we get that v = 0 ⇒ A (v). Hence, we obtain
v = 0 ∨ (TCx,yy = x′) (0, v) ⇒ A (v). Using the additional axiom we are then able to derive A (v).

What should be the realizers for the TC axioms?

1. a list with one element (a triple).

2. a concatenation of the two lists in the hypothesis.

3. Suppose ψ (u, v)&ψ (v, w) ⇒ ψ (u,w) is realized by the function f and ϕ (x, y) ⇒ ψ (x, y) by g.
The intuitive computation behind this generalized induction principle is recursively computing
on the list that realizes (TCx,yϕ) (u, v), call it r, in the following way: we start with the first
two triples, applying g to the third element in both. This results in a chin of two realizers for
ψ who can now be combined into one using f . We now move to the next element, first using g
to convert the ϕ-realizer to a ψ-realizer, then using f to combine it with the one created in the
previous step. We proceed with this process until eventually we obtain a realizer for ψ (u, v).

Fun fact

Using the transitive closure operator the (constructive) existential quantifier can be defined. How?

∃xϕ⇐⇒

(

TCa,b

(

ϕ
{a

x

}

∨ ϕ

{

b

x

}))

(0, 0)

(0 in this formula can be replaced by any constant symbol.)

Task: First, convince yourself that this indeed holds. Then, try to write the realizers for both direc-
tions of the claim.

References

[1] L. Cohen and R. L. Constable. Intuitionistic ancestral logic. Journal of Logic and Computation,
2015.

2


