Constructive Ancestral Logic

As a somewhat more complex example of a constructive interpretation of a logic we here present Ancestral Logic [1]. This is a rather natural extension of first-order logic, obtained by the addition of the transitive closure operator.

To recall, in mathematics, the transitive closure of the binary relation R on $X, T C_{R}$, is the smallest transitive relation on X that contains R. An alternative, more constructive, definition is $T C_{R}=\bigcup_{n \in \mathbb{N}} R^{n}$ where R^{n} is defined by $R^{0}=R$ and $R^{n}=R^{n-1} \circ R$ for $n>0$.

Ancestral logic is defined to be the extension of FOL obtained by the addition of formulas of the form $\left(T C_{x, y} \varphi\right)(u, v)$ for any formula φ, x, y distinct variables. The free occurrences of x and y in φ become bound in this formula. The intended meaning of $\left(T C_{x, y} \varphi\right)(u, v)$ is that s and t stand in the transitive closure of the binary relation that φ defines on x and y. That is, intuitively, that $\left(T C_{x, y} \varphi\right)(u, v)$ is equivalent to the "infinite disjunction":

$$
\varphi(u, v) \vee \exists w_{1}\left(\varphi\left(u, w_{1}\right) \wedge \varphi\left(w_{1}, v\right)\right) \vee \exists w_{1} \exists w_{2}\left(\varphi\left(u, w_{1}\right) \wedge \varphi\left(w_{1}, w_{2}\right) \wedge \varphi\left(w_{2}, u\right)\right) \vee \ldots
$$

What is the evidence for a $T C$-formula?

To constructively know $\left(T C_{x, y} \varphi\right)(u, v)$, we construct a list of elements, say $\left[a_{0}, \ldots, a_{n}\right]$, and a list of evidence terms $\left[r_{0}, \ldots, r_{n+1}\right]$ such that r_{0} is evidence for $\varphi\left(u, a_{0}\right)$ and r_{n+1} is evidence for $R\left(a_{n}, v\right)$ and the intermediate terms form an evidence chain, i.e. a_{i} is evidence for $\varphi\left(a_{i-1}, a_{i}\right)$ for $0<i \leq n$. Therefore, formally we take the evidence type for $\left(T C_{x, y} \varphi\right)(u, v)$ to consist of lists of the form

$$
\left[\left\langle u, a_{0}, r_{0}\right\rangle,\left\langle a_{0}, a_{1}, r_{1}\right\rangle, \ldots,\left\langle a_{n}, v, r_{n+1}\right\rangle\right]
$$

where the above-mentioned conditions hold.

Proof System

The proof system for Ancestral logic is obtained by the addition of the followings to the system for FOL:

1. $\varphi(u, v) \Rightarrow\left(T C_{x, y} \varphi\right)(u, v)$
2. $\left(T C_{x, y} \varphi\right)(u, v) \&\left(T C_{x, y} \varphi\right)(v, w) \Rightarrow\left(T C_{x, y} \varphi\right)(u, w) \mathrm{t}$
3. $(\psi(u, v) \& \psi(v, w) \Rightarrow \psi(u, w)) \&(\varphi(x, y) \Rightarrow \psi(x, y)) \Rightarrow\left(\left(T C_{x, y} \varphi\right)(u, v) \Rightarrow \psi(u, v)\right)$

In the case of number theory, instead of Axiom 13 (the induction principle of PA and HA) it suffices to take $v=0 \vee\left(T C_{x, y} y=x^{\prime}\right)(0, v)$ as an additional axiom. This is because the third TC-axiom is a generalized induction rule that allows for the derivation of arithmetical induction.

How can we derive Axiom 13 in the TC system?

Take $\varphi(x, y):=y=x^{\prime}$ and $\psi(x, y):=A(x) \Rightarrow A(y)$. The first conjunct of the third TC-axiom is of course true. The second one is true due to the assumption $\forall x \cdot A(x) \Rightarrow A\left(x^{\prime}\right)$. Thus, we have $\left(T C_{x, y} y=x^{\prime}\right)(u, v) \Rightarrow(A(u) \Rightarrow A(v))$. Substituting 0 for u we get $\left(T C_{x, y} y=x^{\prime}\right)(0, v) \Rightarrow$ $(A(0) \Rightarrow A(v))$, from which it is straightforward to derive $\left(T C_{x, y} y=x^{\prime}\right)(0, v) \Rightarrow A(v)$, by the assumption $A(0)$. Using the same assumption we get that $v=0 \Rightarrow A(v)$. Hence, we obtain $v=0 \vee\left(T C_{x, y} y=x^{\prime}\right)(0, v) \Rightarrow A(v)$. Using the additional axiom we are then able to derive $A(v)$.

What should be the realizers for the TC axioms?

1. a list with one element (a triple).
2. a concatenation of the two lists in the hypothesis.
3. Suppose $\psi(u, v) \& \psi(v, w) \Rightarrow \psi(u, w)$ is realized by the function f and $\varphi(x, y) \Rightarrow \psi(x, y)$ by g. The intuitive computation behind this generalized induction principle is recursively computing on the list that realizes $\left(T C_{x, y} \varphi\right)(u, v)$, call it r, in the following way: we start with the first two triples, applying g to the third element in both. This results in a chin of two realizers for ψ who can now be combined into one using f. We now move to the next element, first using g to convert the φ-realizer to a ψ-realizer, then using f to combine it with the one created in the previous step. We proceed with this process until eventually we obtain a realizer for $\psi(u, v)$.

Fun fact

Using the transitive closure operator the (constructive) existential quantifier can be defined. How?

$$
\exists x \varphi \Longleftrightarrow\left(T C_{a, b}\left(\varphi\left\{\frac{a}{x}\right\} \vee \varphi\left\{\frac{b}{x}\right\}\right)\right)(0,0)
$$

(0 in this formula can be replaced by any constant symbol.)
Task: First, convince yourself that this indeed holds. Then, try to write the realizers for both directions of the claim.

References

[1] L. Cohen and R. L. Constable. Intuitionistic ancestral logic. Journal of Logic and Computation, 2015.

