CS6180 Lecture 26 – Automated Reasoning and Ultra-Intuitionism

Robert L. Constable

Abstract

This lecture will briefly consider two topics. The main one is the relationship between automated reasoning, an AI topic, and constructive type theory. The other topic is a brief mention of a radical approach to the foundations of mathematics called ultra-intuitionism and a discussion of impredicativity, a feature of logics considered dangerous and even unacceptable to some excellent mathematicians and logicians. Ultra-intuitionism denies the existence of infinite types or sets, accordingly mathematics is concerned with constructive reasoning about relatively small finite types (less than 10^{12} elements).

1 Automated Reasoning

The study of automated reasoning originated in Artificial Intelligence (AI) [29], and it continues to have strong ties to AI through the increasing use of proof assistants and the efforts to make them “smarter”.

Proof assistants such as Agda, Coq, Nuprl, and Lean are designed to help users create formal proofs and formally correct theorems and software that provably meets precise specifications. Recent applications of proof assistants have focused on creating provably correct software as featured in the Software Foundations Project [31]. There is direct and immediate economic value to this activity, and it is thus possible to find support from industry as well as from NSF and other science funding agencies. It is assumed that some of the funding for applied work will enhance the effectiveness of proof assistants. To some extent this is born out in practice.

Other applications that have gathered attention are uses of proof assistants to check solutions to famous problems in mathematics such as the Four Color Theorem [16] and a machine checked proof of the Odd Order Theorem in group theory [17]. Recently Hales and colleagues checked his proof of the Kepler Conjecture using HOL [13]. There is other high profile work using proof assistants in mathematics, especially in formalizing elements of homotopy theory [33, 34] and in applications to cyber physical systems [3]. We have seen an example of this with the results of Dr. Bickford and his collaborators Coquand and Anders as they confirmed the constructive validity of the Univalence Axiom in homotopy theory.

Steven Pinker’s book, How the Mind Works [32], provides an engaging glimpse of the AI side of automated reasoning. He discusses a “computational theory of mind” and compares the results of

1 Some historians credit a summer meeting at Cornell in 1957 as the beginning of AI. The paper by Newell, Shaw, and Simon cited above was presented at that meeting.

2 Some software companies have paid consulting firms to evaluate the cost effectiveness of this practice, and the results have so far confirmed its value.
In a 1998 long (103 page) article on type theory [10], I make a case for the value of AI in proof assistants. The early articles in this area inspired me and my PhD students, in particular articles of McCarthy, Newell, Shaw, and Simon [23, 24, 29, 4]. These articles led to the work of Robin Milner at Edinburgh [18] that changed life in Cornell CS in both PL and AI. Robin Milner also provided a second academic home for what would become Nuprl. At Edinburgh I also became familiar with the work of Boyer and Moore [4, 5, 6] and the work of Alan Bundy [7] on the Clam-Oyster system. This AI group liked to say that their system had a “PRL” in it.

Another major influence on the Nuprl logic was the Automath system of N.G. de Bruijn [11, 12, 21, 27, 35]. This was a completely formal system for doing all of mathematics. However, it did not employ any automated reasoning tools. De Bruijn was in the mathematics department and his university did not have a computer science department. We learned how hard it was to do formal proofs without help from a system, and this led us to embrace as much AI technology as we could bring to bear. The work of Robin Milner on LCF gave us the tools we needed.

The lecture will give examples of various milestones in our efforts include AI results and techniques into the Nuprl proof assistant. These advances made it possible to formalize significant elements of mathematics and to solve open problems in mathematics [20, 26, 8] – the last one open for sixty seven years.

1.1 LCF tactics and tacticals

In the Edinburgh LCF proof assistant [18], automation of reasoning was accomplished by writing tactics that decomposed a goal into subgoals and tacticals which combine tactics to create larger ones. Here is an example of a simple LCF tactic.

SIMPTAC : tactic (w, ss, w1) |−−−−−−−> [(w′, ss, w10)] where w′ is the simplification of w by applying the rule ss.

Tacticals are methods of combining tactics. For example, THEN is a tactical that can sequence tactics. Here is what the LCF manual says about it.

The tactic T1 THEN T2 first applies T1 to the goal, then applies T2 to all of the resulting subgoals. Failure of either T1 or T2 fails.

The tactic T1 ORELSE T2 acts on a goal as T1 unless the later fails, in which case it acts as T2.

The tactic REPEAT T applies T repeatedly to the goal and all subgoals so produced, until T is no longer applicable (i.e. would fail). REPEAT T never fails. The LCF definition is this:

letrec REPEAT(T) g = ((T THEN REPEAT(T)) ORELSE IDTAC) g ;;

1.2 Formal Digital Library (FDL)

The Nuprl system organizes all of its definitions, theorems, and tactics into a database that we call the FDL (Formal Digital Library) or just the Library [2, 9, 1, 22]. This is more than a collection of
“books” or “theories.” The library is shared by all Nuprl users, and can be used to coordinate users as they collaborate on building a theory or creating a proof. In addition, the FDL can operate autonomously to some extent by running various reasoning tactics in the background checking for computational equality of terms or for subtyping relations or by proving results in decidable theories, especially in numerical theories.

The library provides many utilities for searching, and it can be accessed concurrently by many processes and many users. There are features that allow users to cooperate in creating a proof. The FDL can also operate in an autonomous mode where it explores proof possibilities on its own in the background. It has happened many times that Nuprl will find a proof or make intelligent suggestions that lead to novel proofs.

Here is a list of some of the ways the Nuprl FDL assists users in developing proofs and theories.

1. Enable multiple users to work on a proof together.
2. Allow multiple refiners to be working on the same proof, asynchronous refinement.
3. Automatically find “similar results” in the Library to a current goal.
4. Set default tactics to run automatically after various kinds of proof steps.
5. Offer suggestions for the next step in a proof, “here is what I would try next.”
6. Use machine learning to find patterns of inference and automatically explore them in the background.

One question that might arise in the near term is whether Nuprl should be given explicit credit for a proof. Acknowledging it the first time will require a “high bar” to avoid ridicule, but in due course this will happen, and the chances are good that it will happen with Nuprl.

We are preparing the FDL for use with various machine learning tools. We are confident that before long we will be able to exhibit this capability in a compelling way. Such results will attract significant attention and funding, and they will introduce a new era in mathematical discovery.

2 Ultra-intuitionism and Predicative Mathematics

For some mathematicians, the intuitionistic restrictions are not sufficient to create a completely safe and sound basis for mathematical truth. The mathematician A.S. Yessenin-Volpin does not believe that the natural number 10^{12} exists. He says that no one can count that far – at one number per second, it would take more than 20,000 years to reach this number. We might admit that we can’t count this high, but we seem to grasp the number.

2.1 Ultra-intuitionism

Ultra-intuitionism is a radical restriction of mathematics.
2.2 Predicative versus Impredicative Mathematics

There are more mathematicians who would be flexible on the size of numbers yet who object to
definitions that are impredicative. These are definitions that quantify over the set being defined
in its definition. When we examine the standard axioms for Peano Arithmetic (PA) [30] or the
intuitionistic axioms for Heyting Arithmetic (HA) [19] we see quantification over the type (or
set) of natural numbers N. This makes the account of arithmetic impredicative. The Princeton
mathematician gives a predicative account of N in his book Predicative Arithmetic [28]. He caught
the attention of the mathematical world when he presented a proof of the inconsistency of Primitive
Recursive Arithmetic (PRA) [?]. Later Terence Tao found an error in his proof. Nelson was
interested in using the QED system to check his proof of inconsistency, but the status of this work
is unclear.

There are a larger number of excellent mathematicians who prefer predicative mathematics
[14, 15, 28]. In the earliest days of constructive type theory, we implemented an impredicative
recursive type [25], but we found that we could use Brouwer’s Bar Induction to cover the important
topics, so we no longer use impredicative recursive types. Nevertheless, some mathematicians such
as Edward Nelson of Princeton University, would say that even the number theory of constructive
type theory is impredicative [28]. We will briefly discuss this viewpoint.

We can examine a simple example of impredicative reasoning about numbers, showing that
ordinary mathematical induction is impredicative. This example by Edward Nelson makes the
point very succinctly. It is included as supplementary reading for this lecture, copied from the
book Predicative Arithmetic [28].

References

[1] Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton, Christoph Kreitz, Lori Lorigo,

 provers: A case study with linear arithmetic. In J. E. Hayes, D. Michie, and J. Richards,

Stickel, editor, Proceedings of the 10th International Conference on Automated Deduction,

