Specification for Leader Election in a Ring

Given a Ring R of Processes with Unique Identifiers (uid’s)

2° . 0

&
® ®

Oa @
Let n(i) = dst(out(i)), the next location
Let p(i) = n™ (i), the predecessor location

Letd(i,j) = uk = 1. n*(i) =j, the distance from i to j
Note i = p() = d(i,p()) =d(i,j)-1

CSG(fo Lact 4 X

Specification, continued

Leader (R,es) =3 1dr: R. (Je@ldr. kind(e)=leader) &
(Vi:R. Ve@i. kind(e)=leader = i=Idr)

Theorem V R:List(Loc). Ring(R)
3 D:Dsys(R). Feasible(D) &
Ves: ES. Consistent(D,es). Leader(R,es)

Csclgo let 24
3

Decomposing the Leader Election Task

Let LE(R,es) == Vi:R.
1. Je. kind(e)=rcv(out(i), <vote,uid(i)>)

2. Ve'. kind(e)=rcv (in(i), <vote,u>) =

(u>uid(i) = 3e'kind(e’)=rcv (out(i),<vote,u>))

3. Ve'. [(kind(e)=rcv(out(i), <vote,uid(i)>)) v
Je. (kind(e)=rcv(in(i), <vote,u>)& (e <e' & u> uid(i)))]

4. Ve@i. kind(e)=rcv(in(i),uid(i)). Je'@i. kind(e')=leader

5. Ve@i. kind(e)=leader. Je@i. kind(e)=rcv (in(i), <vote,uid(i)>)

CScigo Lek 24 Y

Realizing Leader Election

Theorem VR:List(Loc) . Ring(R)
dD:Dsys(R) . FeasibleD) .
Ves:Consistent(D, es) . (LER, es) = Leader(R, es))

Proof: Letm = max {uid() | i € R}, thenldr = uid (m).

We prove that 1dr = uid™(m) using three simple lemmas.

CS GlEO Leck 2Y¢
S

Intuitive argument that a leader is elected

1. Every i will get a vote from predecessor for the

predecessor.

in(i) =

2. When a process i gets a vote u from its predecessor with u out (p(i))

> uid(7) it sends it on.

3. Every rcv is either vote of predecessor rcv;,) for itself or a

vote larger than process id before.

4. If a process gets a vote for itself, it declares itself 1dr. @

5. If a processor declares Idr it got a vote for itself.

CS5cCl8o Lect 24

Lemmas
Lemmal. Vi : R.Je@i.kind(e) = rcv (in(), <vote, 1ldr>)

By induction on distance of i to 1dr.

Lemma?2. Vi, j : R.Ve@4i.kind(e) = rcv (ind), <vote, 3>).
(3 = 1dr v d(1dr, j) < d(dr, 1))
By induction on causal order of rcv events.
Lemma3. Vi : R.Ve @i. (kind(e') = leader = i = ldr)

If kind(e') = leader, then by property 5, 3v @ i.rcv (in(i) , <vote, uidi)>).
Hence, by Lemma2 i = ldr v (d(ldr, i) < d(1dr, 1))
but the right disjunct is impossible.

Finally, from property 4, it is enough to know
Je.kkind(e) = rcv (in(ldr), <vote, uid(ldr)>)
which follows from Lemma 1.

QED

CSc 8o Lact 2¥4
=

Realizing the clauses of LE(R,es)

We need to show that each clause of LE (R, es) can be
implemented by a piece of a distributed system, and then show
the pieces are compatible and feasible.

We can accomplish this very logically using these Lemmas:

=Constant Lemma
sSend Once Lemma
mRecognizer Lemma

= Trigger Lemma

CSGl& Lact 24
8

Leader Election Message Automaton
state me : U ; initially uid(7)
state done : B; initially false
state x : B; initially false
action vote; precondition —done
effect done : = true
sends [msg (out(i), vote,me)]
action rcv,,;,(vote)(v) : U ;
sends if v > me then [msg(out(i), vote,v)] else]]
effect x : = if me = v then true else x
action leader; precondition x = true
only rcv,,; (vote) affects x

only vote affects done

only {vote, rcv,,; /(vote)} sends out (i), vote

C S g\go Lect 1Y
=

Requirements of Consensus Task

Use asynchronous message passing to decide

on a value.
_]

o

‘:><

I

CS cl0 Lact MM
lo

Logical Properties of Consensus

P1: If all inputs are unanimous with value v, then any
decision must have value v.

All v:T. (If All e:E(Input). Input(e) =v then
All e:E(Decide). Decide(e) = v)

Input and Decide are event classes that effectively
partition the events and assign values to them. The
events are points in abstract space/time at which
“information flows.” More about this just below.

CSc (&0 Lect 24
U

Logical Properties continued

P2: All decided values are input values.

All e:E(Decide). Exists e’:E(Input).
e’ < e & Decide(e) = Input(e’)

We can see that P2 will imply P1, so we take
P2 as part of the requirements.

CScl80 lLect AY
(2

Event Classes

If X is an event class, then E(X) are the events
in that class. Note E(X) effectively partitions all
events E into E(X) and E-E(X), its complement.

Every event in E(X) has a value of some type T
which is denoted X(e). In the case of E(Input)
the value is the typed input, and for E(Decide)
the value is the one decided.

CS clfo lect 2t
(3

Further Requirements for Consensus

The key safety property of consensus is that
all decisions agree.

P3: Any two decisions have the same value.
This is called agreement.

All el,e2: E(Decide). Decide(el) = Decide(e2).

CS 6180 Lect Y
N

Specific Approaches to Consensus

Many consensus protocols proceed in rounds,
voting on values, trying to reach agreement.
We have synthesized two families of
consensus protocols, the 2/3 Protocol and the
Paxos Protocol families.

We structure specifications around events
during the voting process, defining E(Vote)
whose values are pairs <n,v>, a ballot number,
n, and a value, v.

Properties of Voting

CSci€o Loct 24
\&

Suppose a group G of n processes, Pi, decide by

voting. If each Pi collects all n votesintoa
and applies some deterministic function f(

Ist L,

), such

as majority value or maximum value, etc., then
consensusis trivial in one step, and the value is

known at each process in the first round —
possibly at very different times.

The problem is much harder because of possible

failures.

C5c (g0 CLect2Y
(&

Fault Tolerance

Replication is used to ensure system availability in
the presence of faults. Suppose that we assume
that up to f processes in a group G of n might fail,
then how do the processes reach consensus?

The TwoThirds method of consensus is to take n =
3f +1 and collect only 2f+1 votes on each round,
assuming that f processes might have failed.

Cs Gl Leacty
L7

Exampleforf=1,n=4

Here is a sample of voting in the case T ={0,1}.

0 0 1 1 Inputs
O 11 011 001_ 00 1 collected votes
1 1 0 0 next vote

001 001 011 o011
0 0 1 1
where f is majority voting, first vote is input

CS6l&0 Lect 2Y
\g

Specifying the 2/3 Method

We can specify the fault tolerant 2/3 method
by introducing further event classes.

E(Vote), E(Collect), E(Decide)

E(Vote): the initial vote is the <0,input value>,
subsequent votes are <n,f(L)>

E(Collect): collect 2f+1 values from G into list L
E(Decide): decide v if all collected values are v

CSctgo Latat
(B4

The Hard Bits

The small example shows what can go wrong
with 2/3. It can waffle forever between 0 and
1, thus never decide.

Clearly if there is are decide events, the values
agree and that unique value is an input.

Can we say anything about eventually
deciding, e.g. liveness?

CSa@l8o Lect 24
O

Liveness

If f processes eventually fail, then our design
will work because if f have all failed by round r,
then at round r+1, all alive processes will see
the same 2f+1 values in the list L, and thus
they will all vote for v’ = f(L), so in round r+2
the values will be unanimous which will
trigger a decide event.

CS clfo Lect 24
a(

Exampleforf=1,n=4

Here is a sample of voting in the case T ={0,1}.

0 0 i 1 Inputs
001 001_ 001_ 011 collectedvotes
0 0 0 1 nextvote

0000 001 001 _001

0 0 0 0

where f is majority voting, first vote is input,
round numbers omitted.

CSslso Lect 2Y
)74

Safety Example

We can see in the f = 1 example that once a
process Pi receives 2/3 unanimous values, say
0, it is not possible for another process to over

turn the majority decision.

Indeed this is a general property of a 2/3
majority, the remaining 1/3 cannot overturn it
even if they band together on every vote.

CS g0 Lect Y
23

Safety Continued

In the general case when voting is not by
majority but using f(L) and the type of values
is discrete, we know that if any process Pi sees
unanimous value vin L, then any other
process Pj seeing a unanimous value v’ will
see the same value, i.e. v =V’ because the two
lists, Li and Lj at round r must share a value,

that is they intersect.

CSclgo Leat Yy

LY

Synthesizing the 2/3 Protocol from a
Proof of Design

We can formally prove the safety and liveness
conditions from the event logic specification
given earlier.

From this formal proof of design, pf, we can
automatically extract a protocol, first as an
abstract process, then by verified compilation,
a program in Java or Erlang.

CSelfo Lact 2Y
=5

The Synthesized 2/3 Protocol

Begin r:Nat, decided_i, vote_i: Bool,
r =0, decided i = false, vi = input to Pi; vote_i = vi

Until decided i do:

r:=r+l

Broadcast vote <r,vote_i>to group G
Collect 2f+1 round r votes in list L
vote_i := majority(L)

If unanimous(L) then decided i := true

Ul = e =

End

C3cl§0 Leck 2Y
A&

Abstract Process Model

M(P) == (Atom List) X (T + P)
E(P) == (Loc X M(P)) List
F(P) = M(P) = (P X E(P))

It is easy to show that M and E are continuous type
functions and that F is weakly continuous. Thus for

Process == corec(P. F (P))

Msg == M(Process) and Ext == E(Process)

we conclude Process is a subtype of F(Process),
Process © Msg -2 Process X Ext

Cs& (8o Llect 2y

L7

A Fundamental Theorem of about the
Environment

The Fischer/Lynch/Paterson theorem (FLP85)
about the computing environment says:

it is not possible to deterministically guarantee
consensusamong two or more processes when
one of them might fail.

We have seen the possibility of this with the 2/3

Protocol which could waffle between choosing 0
or 1. The environment can act as an adversary to
consensus by managing message delivery.

C (8o lack 2Y
28

The Environment as Adversary

In the setting of synthesizing protocols, | have
shown that the FLP result can be made
constructive (CFLP). This means that there is
an algorithm, env, which given a potential
consensus protocol P and a proof pf that it is
nonblocking can create message ordering and
a computation based on it, env(P,pf), in which
P runs forever, failing to achieve consensus.

c<€ el 8o Lec‘f'o?l{
29

Definitions

P is called effectively nonblocking if from any
reachable global state s of an execution of P and
any subset Q of n — t nonfailed processes, we can
find an execution from s using Q and a process P
in Q which decides a value v.

Constructively this means that we have a
computable function, wt(s,Q) which produces an
execution and a states in which a process, say P
decides a value v.

Constructive FLP

Theorem (Constructive FLP): Given any
deterministic effectively nonblocking
consensus procedure P with two or more
processes tolerating a single failure, we can
effectively construct a non-terminating
execution of it.

Csecl o Lect 2V
30

