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PREFACE TO THE
SECOND EDITION

In this second edition, many changes have been made based on nine years of classroom
experience. There are major revisions to the first six chapters and the Epilogue, and there
is one completely new chapter, Chapter 14, on differential equations. In addition, the origi-
nal Chapters 11 and 12 have been repackaged as three chapters: Chapter 11 on partial dif-
ferentiation, Chapter 12 on multiple integration, and Chapter 13 on vector calculus,

Chapter 1 has been shortened, and much of the theoretical material from the first
edition has been moved to the Epilogue. The calculus of transcendental functions has been
fully integrated into the course beginning in Chapter 2 on derivatives. Chapter 3 focuses
on applications of the derivative. The material on setting up word problems and on related
rates has been moved from the first two chapters to the beginning of Chapter 3. The theoreti-
cal results on continuous functions, including the Intermediate, Extreme, and Mean Value
Theorems, have been collected in a single section at the end of Chapter 3. The development
of the integral in Chapter 4 has been streamlined. The Trapezoidal Rule has been moved
from Chapter 5 to Chapter 4, and a discussion of Simpson’s Rule has been added. The sec-
tion on area between two curves has been moved from Chapter 6 to Chapter 4, Chapter
5 deals with limits, approximations, and analytic geometry. An extensive treatment of
conic sections and a section on Newton’s method have been added. Chapter 6 begins with
new material on finding a volume by integrating areas of cross sections.

Only minor changes and corrections have been made to Chapters 7 through 13.
The new Chapter 14 gives a first introduction to differential equations, with emphasis on
solving first and second order linear differential equations. In Section 14.4, infinitesimals
are used to give a simple proof that every differential equation y’ = f(t,y), where f is con-
tinuous, has a solution. The proof of this fact is beyond the scope of a traditional elementary
calculus course, but is within reach with infinitesimals.

I wish to thank all my friends and colleagues who have suggested corrections and
improvements to the first edition of the book.

H. Jerome Keisler



PREFACE TO THE
FIRST EDITION

The calculus was originally developed using the intuitive concept of an infinitesimal,
or an infinitely small number. But for the past one hundred years infinitesimals have
been banished from the calculus course for reasons of mathematical rigor. Students
have had to learn the subject without the original intuition. This calculus book is
based on the wark of Abraham Robinson, who in 1960 found a way to make infinitesi-
mals rigorous. While the traditional course begins with the difficult limit concept,
this course begins with the more easily understood infinitesimals. It is aimed at the
average beginning calculus student and covers the usual three or four semester
sequence.

The infinitesimal approach has three important advantages for the student.
First, it is closer to the intuition which originally led to the calculus. Second, the
central concepts of derivative and integral become easier for the student to under-
stand and use. Third, it teaches both the infinitesimal and traditional approaches,
giving the student an extra tool which may become increasingly important in the
future.

Before describing this book, I would like to put Robinson’s work in historical
perspective. In the 1670%s, Leibniz and Newton developed the calculus based on the
intuitive notion of infinitesimals. Infinitesimals were used for another two hundred
years, until the first rigorous treatment of the calculus was perfected by Weierstrass
in the 1870's. The standard calculus course of today is still based on the “¢, § definition”
of limit given by Weierstrass. In 1960 Robinson solved a three hundred year old
problem by giving a precise treatment of the calculus using infinitesimals. Robinson’s
achievement will probably rank as one of the major mathematical advances of the
twentieth century.

Recently, infinitesimals have had exciting applications outside mathematics,
notably in the fields of economics and physics. Since it is quite natural to use infinitesi-
mals in modelling physical and social processes, such applications seem certain to
grow in variety and importance. This is a unique opportunity to find new uses for
mathematics, but at present few people are prepared by training to take advantage of
this opportunity,

Because the approach to calculus is new, some instructors may need addi-
tional background material. An instructor’s volume, “Foundations of Infinitesimal
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Calculus,” gives the necessary background and develops the theory in detail. The
instructor’s volume is keyed to this book but is self-contained and is intended for the
general mathematical public.

This book contains all the ordinary calculus topics, including the traditional
limit definition, plus one exua tool—the infinitesimals. Thus the student will be
prepared for more advanced courses as they are now taught. In Chapters 1 through 4
the basic concepts of derivative, continuity, and integral are developed quickly using
infinitesimals. The traditional limit concept is put off until Chapter 5, where it is
motivated by approximation problems. The later chapters develop transcendental
functions, series, vectors, partial derivatives, and multiple .integrals. The theory
differs from the traditional course, but the notation and methods for solving practical
problems are the same. There is a variety of applications to both natural and social
sciences.

I have included the following innovation for instructors who wish to intro-
duce the transcendental functions early. At the end of Chapter 2 on derivatives, there
is a section beginning an alternate track on transcendental functions, and each of
Chapters 3 through 6 have alternate track problem sets on transcendental functions.
This alternate track can be used to provide greater variety in the early problems, or
can be skipped in order to reach the integral as soon as possible. In Chapters 7 and 8
the transcendental functions are developed anew at a more leisurely pace.

The book is written for average students. The problems preceded by a square
box go somewhat beyond the examples worked out in the text and are intended for
the more adventuresome.

T was originally led to write this book when it became clear that Robinson’s
infinitesimal calculus could be made available to college freshmen. The theory is
simply presented; for example, Robinson’s work used mathematical logic, but this
book does not. I first used an early draft of this book in a one-semester course at the
University of Wisconsin in 1969. In 1971 a two-semester experimental version was
published. It has been used at several colleges and at Nicolet High School near
Milwaukee, and was tested at five schools in a controlled experiment by Sister Kathleen
Sullivan in 1972-1974. The results (in her 1974 Ph.D. thesis at the University of
Wisconsin) show the viability of the infinitesimal approach and will be summarized
in an article in the American Mathematical Monthly.

I am indebted to many colleagues and students who have given me encourage-
ment and advice, and have carefully read and used various stages of the manuscript.
Special thanks are due to Jon Barwise, University of Wisconsin; G. R. Blakley,
Texas A & M University; Kenneth A. Bowen, Syracuse University; William P.
Francis, Michigan Technological University; A. W. M. Glass, Bowling Green
University; Peter Loeb, University of Illinois at Urbana; Eugene Madison and
Keith Stroyan, University of ITowa; Mark Nadel, Notre Dame University; Sister
Kathleen Sullivan, Barat College; and Frank Wattenberg, University of Massa-
chusetts.

H. Jerome Keisler
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INTRODUCTION

While arithmetic deals with sums, differences, products, and quotients, calculus
deals with derivatives and integrals. The derivative and integral can be described in
everyday language in terms of an automobile trip. An automobile instrument panel
has a speedometer marked off in miles per hour with a needle indicating the speed.
The instrument panel also has an odometer which tallies up the distance travelled in
miles (the mileage).

40 90 g0
30 70

20 80
10 90

0 * 100
Speedometer—derivative

[eTeeT2[]2]

Odometer—integral

Both the speedometer reading and the odometer reading change with time:
that is, they are both “functions of time.” The speed shown on the speedometer is
the rate of change, or derivative, of the distance. Speed is found by taking a very small
interval of time and forming the ratio of the change in distance to the change in time.
The distance shown on the odometer is the integral of the speed from time zero to the
present. Distance is found by adding up the distance travelled from the first use of the
car to the present.

The calculus has a great variety of applications in the natural and social
sciences. Some of the possibilities are illustrated in the problems. However, future
applications are hard to predict, and so the student should be able to apply the
calculus himself in new situations. For this reason it is important to learn why the
calculus works as well as what it can do. To explain why the calculus works, we
present a large number of examples, and we develop the mathematical theory with
great carc.

Xi
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REAL AND
HYPERREAL
NUMBERS

Chapter 1 takes the student on a direct route to the point where it is possible to
study derivatives. Sections 1.1 through 1.3 are reviews of precalculus material and
can be skipped in many calculus courses. Section 1.4 gives an intuitive explanation
of the hyperreal numbers and how they can be used to find slopes of curves. This
section has no problem set and is intended as the basis for an introductory lecture.
The main content of Chapter 1 is in the last two sections, 1.5 and 1.6. In these
sections, the student will learn how to work with the hyperreal numbers and in
particular how to compute standard parts. Standard parts are used at the beginning
of the next chapter to find derivatives of functions. Sections 1.5 and 1.6 take the
place of the beginning chapter on limits found in traditional calculus texts.

For the benefit of the interested student, we have included an Epilogue at
the end of the book that presents the theory underlying this chapter.

THE REAL LINE

Familiarity with the real number system is a prerequisite for this course. A review of
the rules of algebra for the real numbers is given in the appendix. For convenience,
these rules are also listed in a table inside the front cover. The letter R is used for
the set of all real numbers. We think of the real numbers as arranged along a straight
line with the integers (whole numbers) marked off at equal intervals, as shown in
Figure 1.1.1. This line is called the real line.

—_————p— .
-4 -3 -2 -1 0 1 2 3 4

Figure 1.1.1 The real line.

In grade school and high school mathematics, the real number system is
constructed gradually in several stages. Beginning with the positive integers, the
systems of integers, rational numbers, and finally real numbers are built up. One
way to construct the set of real numbers is as the set of all nonterminating decimals.



1 REAL AND HYPERREAL NUMBERS

After constructing the real numbers, it is possible to prove the familiar rules for
sums, differences, products, quotients, exponents, roots, and order. In this course,
we take it for granted that these rules are familiar to the student, so that we can
proceed as quickly as possible to the calculus.

Before going on, we pause to recall two special points that are important
in the calculus. First, division by zero is never allowed. Expressions such as

2 0 X 5
00 0 0 1+3-4

are always considered to be undefined.

Second, a positive real number ¢ always has two square roots, \/E and
-./¢, and \ﬁ always stands for the positive square root. Negative real numbers
do not have real square roots. For each positive real number c, \ﬁ is positive and

/ —c is undefined.

On the other hand, every real number has one real cube root. If ¢ > 0, ¢
has the positive cube root \3/2, and —c has the negative cube root \3/: = -Ye

In calculus, we often deal with sets of real numbers. By a set S of real numbers,
we mean any collection of real numbers, called members of S, elements of S, or
points in S.

A simple but important kind of set is an interval. Given two real numbers
a and b with a < b, the closed interval [a, b] is defined as the set of all real numbers
x such that ¢ < x and x < b, or more concisely, a < x < b

The open interval (a, b) is defined as the set of all real numbers x such that

a < x < b. Closed and open intervals are illustrated in Figure 1.1.2,

reee

2
a b
The closed interval [a, b]

v v 1
)4

VA by
\ Chhcacs ‘7b

a
Figure 1.1.2 The open interval (a, b)

For both open and closed intervals, the number a is called the lower endpoint,
and b the upper endpoint. The difference between the closed interval [a, b] and the
open interval (a, b) is that the endpoints a and b are elements of [a, b] but are not
elements of (a, b). When g < x < b, we say that x is between a and b; whena < x < b,
we say that x is strictly between a and b.

Three other types of sets are also counted as open intervals: the set (¢, ) of
all real numbers x greater than a; the set (— oo, b) of all real numbers x less than b,
and the whole real line R. The real line R is sometimes denoted by (— oz, 20). The
symbols » and — oz, read “infinity” and “minus infinity,” do not stand for numbers;
they are only used to indicate an interval with no upper endpoint, or no lower
endpoint.

Besides the open and closed intervals, there is one other kind of interval,
called a half-open interval. The set of all real numbers x such that « < x < b is a half-
open interval denoted by [a, b). The set of all real numbers x such that ¢ < xisalsoa
half-open interval and is written [a, o). Here is a table showing the various kinds of
intervals.
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Table 1.1.1 Kinds of Intervals

Type Symbol Defining Formula
Closed [a, b] a<x=<bh
Open (a, b) a<x<bhb
Open (a, o0) a<x
Open (—o0,b) x<b
Open (— o0, 00)

Half-open [a, b) as<x<b
Half-open {a, 00) a<x
Half-open (a, b] a<x<b
Half-open (—o0, b] x<b

We list some other important examples of sets of real numbers.

(1) The empty set ¢, which has no elements.

(2) The finite set {a;,...,a,}, whose only elements are the numbers
Ay, 0ys ..y Uy

(3) The set of all x such that x # 0.

(4) Theset N = {1,2,3,4,...} of all positive integers.

(5) ThesetZ =1{...,—-3,-2,-1,0,1,2,3,...} of all integers.

(6) The set Q of all rational numbers. A rational number is a quotient
m/n where m and n are integers and n # 0.

While real numbers correspond to points on a line, ordered pairs of real
numbers correspond to points on a plane. This correspondence gives us a way to
draw pictures of calculus problems and to translate physical problems into the
language of calculus. It is the starting point of the subject called analytic geometry.

An ordered pair of real numbers, (a, b), is given by the first number a and the
second number b. For example, (1, 3), (3, 1), and (1, 1) are three different ordered pairs.
Following tradition, we use the same symbol for the open interval (a,b) and the
ordered pair (a,b). However the open interval and ordered pair are completely
different things. It will always be quite obvious from the context whether (g, b) stands
for the open interval or the ordered pair.

We now explain how ordered pairs of real numbers correspond to points in
a plane. A system of rectangular coordinates in a plane is given by a horizontal and a
vertical copy of the real line crossing at zero. The horizontal line is called the horizontal
axis, or x-axis, while the vertical line is called the vertical axis, or y-axis. The point
where the two axes meet is called the origin and corresponds to the ordered pair (0, 0).
Now consider any point P in the plane. A vertical line through P will cross the x-axis
at a real number x,, and a horizontal line through P will cross the y-axis at a real
number y,. The ordered pair (x,, y,) obtained in this way corresponds to the point P.
(See Figure 1.1.3.) We sometimes call P the point (x,, y,) and sometimes write
P(x,, yo). X, is called the x-coordinate of P and y, the y-coordinate of P.

Conversely, given an ordered pair (x,, y,) of real numbers there is a corre-
sponding point P(x,, yo) in the plane. P(x,, ¥,) is the point of intersection of the
vertical line crossing the x-axis at x,, and the horizontal line crossing the y-axis at y,,.
We have described a one-to-one correspondence between all pointsin the plane and all
ordered pairs of real numbers.

From now on, we shall simplify things by identifying points in the plane with
ordered pairs of real numbers, as shown in Figure 1.1.4.
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Y y
D% E— 3 Plxo, yo) 0, === —4(x, »)
| |
| |
! [
0,0 Xo x 0, (x, 0) X
Figure 1.1.3 Figure 1.1.4
DEFINITION

The (x,y) plane is the set of all ordered pairs (x, y) of real numbers. The origin
is the point (0.0). The x-axis is the set of all points of the form (x,0), and the
v-axis is the set of all points of the form (0, v).

The x- and y-axes divide the rest of the plane into four parts called quadrants.
The quadrants are numbered I through IV, as shown in Figure 1.1.5.

In Figure 1.1.6, P(x,, y,) and Q(x,, y,) are two different points in the (x, y)
plane. As we move from P to Q, the coordinates x and y will change by amounts that
we denote by Ax and Ay. Thus

changein x = Ax = x, — Xy,
changein y = Ay =y, — ;.
The quantitics Ax and Ay may be positive, negative, or zero. For example, when

X, > Xy, Ax is positive, and when ¥, < x, Ax is negative. Using Ax and Ay we define
the basic notion of distance.

Y
11 [
x<0,y>0 x>0,y>0
111 v
x<0,y<0 x>0, y<0 0 B
Figure 1.1.6 Quadrants Figure 1.1.6
DEFINITION

The distance between the points P(x,, y,) and Q(x,, y,) is the quantiry

distance (P, Q) = \/(Ax)* + (Ay)? = V= x)? + =y

When we square both sides of the distance formula, we obtain

[distance (P, Q)] = (Ax)? + (Ay)2.
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One can also get this formula from the Theorem of Pythagoras in geometry: The
square of the hypotenuse of a right triangle is the sum of the squares of the sides.

eXAMPLE 1 Find the distance between P(7, 2) and Q(4, 6) (see Figure 1.1.7).
Ax=4—-7= -3 Ay=06—-2=4

distance (P, Q) = /(—3)® + 42 = &.

We often deal with sets of points in the plane as well as on the line. One
way to describe a set of points in the plane is by an equation or inequality in two
variables, say x and y. A solution of an equation in x and y is a point (xq, yo) in
the plane for which the equation is true. The set of all solutions is called the locus,
or graph, of the equation. The circle is an important example of a set of points in
the plane.

y 0(4,6)

Ay

P(7,2)
Ax

Figure 1.1.7

DEFINITION OF CIRCLE

The set of all points in the plane at distance r from a point P is called the circle
of radius v and center P.

Using the distance formula, we see that the circle of radius r and center at the
origin (Figure 1.1.8) is the locus of the equation

x* 4yt =

The circle of radius r and center at P(h, k) (Figure 1.1.8) is the locus of the equation

2

(x —h)? + (v — k> =1

h, k)

-
VA x

Figure 1.1.8 x24yr=1y2 (x—h?+(y—k)?=r2
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For example, the circle with radius 3 and center at P(2, —4) has the equation

(x=22+(+4*=09
PROBLEMS FOR SECTION 1.1

In Problems 1-6, find the distance between the points P and Q.

1 P(2,9), 0(—1,13) 2 P(1, =2), 02, 10)
3 P(0,0), Q(-2, ~3) 4 P(—1,-1), 04,4
5 P66, 1), 0(-7, 1) 6 P(5, 10), 009, 10)
Sketch the circles given in Problems 7-12.
7 x24+y2 =4 8 Xyt =g
9 x—1D2+r+2?2=1 10 (x+222+@+3?*=9
11 x-D*+(@p-172=2 12 (x+3)+@y—-42=25
13 Find the equation of the circle of radius 2 with center at (3, 0).
14 Find the equation of the circle of radius \/5 with center at (— 1, —2).
O 15 There are two circles of radius 2 that have centers on the line x = I and pass through
the origin. Find their equations.
O 16 Find the equation of the circle that passes through the three points (0, 0), (0, 1), (2, 0).
0 17 Find the equation of the circle one of whose diameters is the line segment from (—1, 0)
to (5, 8).

1.2 FUNCTIONS OF REAL NUMBERS

The next two sections are about real numbers only. The calculus deals with problems
in which one quantity depends on one or more others. For example, the area of a
circle depends on its radius. The length of a day depends on both the latitude and the
date. The price of an object depends on the supply and the demand. The way in which
one quantity depends on one or more others can be described mathematically by a
function of one or more variables.

DEFINITION

A real function of one variable is a set f of ordered pairs of real numbers such
that for every real number a one of the following two things happens:

(i) There is exactly one real number b for which the ordered pair (a,b) is a
member of f. In this case we say that f(a) is defined and we write f(a) = b.
The number b is called the value of f at a.

(i) There is no real number b for which the ordered pair (a, b) is a member of
f. In this case we say that f(a) is undefined.

Thus f(a) = b means that the ordered pair (g, b) is an element of f.

Here is one way to visualize a function. Imagine a black box labeled f as in
Figure 1.2.1. Inside the box there is some apparatus, which we can’t see. On both the
left and right sides of the box there is a copy of the real line, called the input line and
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a9
d f@
R R
Input Output
Figure 1.2.1 line line

output line, respectively. Whenever we point to a number « on the input line, either
one point b will light up on the output line to tell us that f(a) = b, or else nothing will
happen, in which case f(a) is undefined.

A second way to visualize a function is by drawing its graph. The graph of a
real function f of one variable is the set of all points P(x, y) in the plane such that
3 = f(x). To draw the graph, we plot the value of x on the horizontal, or x-axis and
the value of f(x) on the vertical, or y-axis. How can we tell whether a set of points in
the plane is the graph of some function? By reading the definition of a function again,
we have an answer.

A set of points in the plane is the graph of some function f if and only if for
each vertical line one of the following happens:

(1) Exactly one point on the line belongs to the set.
(2) No point on the line belongs to the set.

A vertical line crossing the x-axis at a point a will meet the set in exactly one
point (a, b) if f(a) is defined and f(a) = b, and the line will not meet the set at all if
[(a) is undefined. Try this rule out on the sets of points shown in Figure 1.2.2.

y ¥y y
.
.
.

,\./x " X

Not graphs of functions
Figure 1.2.2
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Here are two examples of real functions of one variable. Each function will
be described in two ways: the black box approach, where a rule is given for finding
the value of the function at each real number, and the graph method, where an
equation is given for the graph of the function.

EXAMPLE 1 The square function.
The square function is defined by the rule
Jx) = x?
for each number x. The value of f(a) is found by squaring a. For instance, the

values of f(0), f(2), f(—=3), f(r), f(r + 1) are
fO=0 f2=4  f(=3)=9,
fN=r  fe+D=r+2+ 1

The graph of the square function is the parabola with the equation y = x2.
The graph of y = x?, with several points marked in, is shown in Figure 1.2.3.

EXAMPLE 2 The reciprocal function.
The reciprocal function g is given by the rule

1
gx) = —.
X

g(x) is defined for all nonzero x, but is undefined at x = 0. Find the following
values if they are defined: g(0), g(2), g(—%), 2(3), g(r + 1).

2(0) is undefined, g2=3% g% = -3
1
l = 4 ' = -
g(z) = 7. g+ 1) PR

The graph of the reciprocal function has the equation y = [/x. This equation
can also be written in the form xy = 1. The graph is shown in Figure 1.2.4.

In Examples 1 and 2 we have used the variables x and y in order to describe

a function. A variable is a letter which stands for an arbitrary real number; that is, it

“varies” over the real line. In the equation y = x?, the value of y depends on the value

of x; for this reason we say that x is the independent variable and y the dependent
variable of the equation.

y

(-2, 4) 2,4

1
('—25 _i)

(-1, D

(LD

(-1, -1

y=xt

Figure 1.2.3

©,0 x
(-1, -2

Figure 1.2.4

xy=1
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In describing a function, we do not always use x and y; sometimes other
variables are more convenient, especially in problems involving several functions.
The variable ¢ is often used to denote time.

It is important to distinguish between the symbol f and the expression f(x).
f by itself stands for a function. f(x) is called a rerm and stands for the value of the
function at x. The need for this distinction is illustrated in the next example.

EXAMPLE 3 Let h be the function given by the rule

Figure 1.2.5

) =6 + 1.

t is a variable, h is a function, and h(t) is a term. The following expressions
are also terms: A(), h(x), h(t®), h(t®) + 1, h(t® + 1), h(x) — h(0), h(t + A1),
h(t + At) — h(?). Find the values of each of these terms.

The values are computed by careful substitution.

h3) =G)P° +1=13
h(x) = x3 + L.
WYy=E)P +1=1+ 1.
Y+ 1 =[P +1]+1=1 42
e+ =@+ 12+ 1 =1+ 365 + 363 + 2.
hx)—h)=[x*+ 1] -+ 1]=x% - %,
Wit + A= + A1) + 1 =163 + 32 At + 3t A2 + A + 1.
h(t + At) — h(t) = [(t + At + 1] — [£3 + 1]
=[t3 4+ 32 At + 3t A + AP + 1] - [£* + 1]
=312 At + 3t At + A,

The graph of h is given by the equation x = > + 1. In this equation, ¢ is the
independent variable and x is the dependent variable. In Figure 1.2.5, the

five points

W-1)=0, h-H=% HO=1 HH=1L k1) =2
are plotted and the graph is drawn.

X

1,2
0,1

(_1 7 ©2 (1 IL)

2°8 2> '8
(=10 !
x=13+1
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DEFINITION

The domain of a real function [ of one variable is the set of all real numbers x
such that f(x) is defined.

The range of [ is the set of all values f(x) where x is in the domain of f.

EXAMPLE 1 (Continued) The domain of the square function is the set R of all real
numbers. The range is the interval [0, o) of all nonnegative reals.

EXAMPLE 2 (Continued) Both the domain and the range of the reciprocal function
are equal to the set of all real x such that x # 0.

When a function is described by a rule, it is understood that the domain is
the set of all real numbers for which the rule is meaningful.

EXAMPLE 3 (Continued) The function h given by the rule
hWy=1+1

has the whole real line as its domain and as its range.

EXAMPLE 4 Let f be the function given by the rule

J) =1 =%~
Thus f(x) is the positive square root of I — x2. The domain of f is the closed
interval [ —1, 1]. The range of fis [0, 1].
For instance,
f(=2)is undefined,  f(—1) =0,  f(0) =L,

&) =3, f()=0,  f(2)is undefined.
The graph of f is given by the equation y = . /1 —x2.
The equation can also be written in the form

x2+yr=1, y=0.

The graph is just the upper half of the unit semicircle, shown in Figure 1.2.6.

1N

Figure 1.2.6 y20
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Sometimes a function is described by explicitly giving its domain in addition
to a rule.

EXAMPLE 5 Let g be the function whose domain is the closed interval [ 1, 2] with the
rule

g(x) = x2.

The domain and rule can be written in concise form with an equation and
extra inequalities,

g(x) = x?, 1<x<2
Note that

2(0) is undefined gly=1
g(2) =4 2(3) is undefined.

The graph is described by the formulas
y = x2, l<x<2

and is drawn in Figure 1.2.7.

Some especially important functions are the constant functions, the identity
function, and the absolute value function.

A real number is sometimes called a constant. This name is used to emphasize
the difference between a fixed real number and a variable.

For a given real number ¢, the function f with the rule

fx)=¢

is called the constant function with value c. It has domain R and range {c}.

EXAMPLE 6 The constant function with value 5 is described by the rule
Jx)=5.
Thus fO=5 f(=3)=5  f(1,000000) = 5.
The graph (Figure 1.2.8) of the constant function with value 5 is given by the

equation y = 5.

Y @, 4

39
(2’ 4) Y

(=35 [(0,5 0,5

y=3
Figure 1.2.7 Figure 1.2.8
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EXAMPLE 7 The function f given by the rule
flx) =x

is called the identity funcrion.

The graph (Figure 1.2.9) of the identity function is the straight line with the
equation y = x.

y
(2,2
1, 1)
0,0 x
(=1, -1
y=x
Figure 1.2.9

The absolute value function is defined by a rule which is divided into two

cases.
DEFINITION
The absolute value function| | is defined by
x ifx=0.
x| = o
—-x ifx<0

The absolute value of x gives the distance between x and 0. It is always
positive or zero. For example,

B =3, [=3=3  [0]=0.

The domain of the absolute value function is the whole real line R while its range is the
interval [0, o).
The absolute value function can also be described by the rule

'Jklz\/?

Its graph is given by the equation y = ,/x?2 The graph is the V shown in Figure 1.2.10.

(-2,2) 2,2

(=1L D (LD

0,0 X
y=1x|

Figure 1.2.10
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If a and b are two points on the real line, then from the definition of |x| we see that

| bl = a—b ifa = b,
TENN g ifhza

Thus |a — b| is the difference between the larger and the smaller of the two numbers.
In other words, |a — bl is the distance between the points a and b, as illustrated in
Figure 1.2.11.

i—la—b[‘:" ]‘*Iagbl—jz

Figure 1.2.11

For example, |2 — 5] = 3, |4 — (—4)| = 8. Here are some useful facts about absolute
values.

THEOREM 1

Let a and b be real numbers.

@ |—al =lal.
(ii) |ab| = |a «|bl.
(iii)y If b # 0, |a/b| = |al/|bl.

PROOF We use the equation |x| = /x%

@) I-d=/(—a?=/a*=al.
(i) lab| = \/(ab)* = /a®b* = \Ja>/b? = |a] - |b].

(i) The proof is similar to (ii).

Warning The equation |a + b| = la| + |b| is false in general. For example,
12+ (—3) = 1, while |2} + |[(=3)] = 5. :

Functions arise in a great variety of situations. Here are some examples.

Geometry:
nr? = area of a circle of radius r
4nr? = surface area of a sphere of radius r
4nr® = volume of a sphere of radius r
sin @ = the sine of the angle 8
Physics:

s(t) = distance a particle travels from time 0 to ¢
u(t) = velocity of a particle at time ¢

a(t) = acceleration of a particle at time ¢

ply) = water pressure at depth y below the surface

C = (F — 32) = Celsius temperature as a
function of Fahrenheit temperature

13
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Economics:

Sf{(t) = population at time ¢
p(t) = price of a commodity at time ¢
¢(x) = cost of x items of a commodity

D(p) = demand for a commodity at price p, i.e., the
amount which can be sold at price p

Functions of two or more variables can be dealt with in a similar way. Here
is the precise definition of a function of two variables.

DEFINITION

A real function of two variables is a set [ of ordered triples of real numbers
such that for every ordered pair of real numbers (a, b) one of the following two
things occurs:

(i) There is exactly one real number ¢ for which the ordered triple (a, b, ¢) is
a member of f. In this case, f(a, b) is defined and we write:

fla, b) = c.

(i1} There is no real number ¢ for which the ordered triple (a, b, ¢) is a member
of f. In this case f(a, b) is called undefined.

If f is a real function of two variables, then the value of f(x, y) depends on
both the value of x and the value of y when f(x, y) is defined.

A real function f of two variables can be visualized as a black box with two
input lines and one output line, as in Figure 1.2.12.

x y z
¢b
s
fla, b)
a
input output
Figure 1.2.12 lines line

The domain of a real function [ of two variables is the set of all pairs of real
numbers (x, y) such that f(x, y) is defined.

The most important examples of real functions of two variables are the sum,
difference, product, and quotient functions:

Sxy)=x+y,  fxp)=xp
fouy)=x—-y.  [flx,y=x/y

The sum, difference, and product functions have the whole plane as domain. The
domain of the quotient function is the set of all ordered pairs (x, y) such that y # 0.
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Here are some examples of functions of two or more variables arising in
applications.

Geometry:
ab = area of a rectangle of sides g and b
abc = volume of a rectangular solid
1bh = area of a triangle with base b and height &
ar*h = volume of a cylinder with circular base of radius r and height
inr*h = volume of a cone with circular base of radius r and height h
\/x* 4+ y* = distance from the origin to (x, y)
Physics:
F = ma = force required to give a mass m an acceleration a
p(x, y, z) = density of a three-dimensional object at the point (x, y, z)
F = Gmm,/s* = gravitational force between objects of mass m,; and m, at

distance s
mo . . . . .
M= e = relativistic mass of an object with rest mass m, and
V1= velocity v
Economics:

c(x, y) = cost of x items of one commodity and y items of another
commodity

D,(p;,p,) = demand for commodity one when commodity one has price p;
and commodity two has price p,

PROBLEMS FOR SECTION 1.2

For each of the following functions (Problems 1-8), make a table showing the value of f(x)

when x = —1, —1, 0,4, 1. Put a * where f(x) is undefined. Example:
x -1 -3 0 3 1
=5 i } 1 -2+ 2 1
1 S =x/3 2 f(x)=3
3 flx) =3x* —5x* +2 4 fxy=1(x-1)
5 f=-x 6 f)=1x
7 fOy=1Ix =4+ [x + 1]
8 f) =/ -1
9 Is the set of ordered pairs {(3, 2), (0, 1), (4, 2)} a function?
10 Is the set of ordered pairs {(0, 2), (3, 6), (3, 4)} a function?
11 If £ is the function f(x) = 1 + x + x, find £(2), £(5), £t + AD), f(1 + t + 13), f(g(t)).

12 IE£(x) = 1/x, find £(2), £ (¢ + AD), £(£2), £ (1/0), £ (D).
13 IT£(x) = xy/x, find (), f (¢ + A6), £ f (/) S(&D)-
14 Iff(x) = ax + b, find f(ct + d), F(*), f(L/0), f(t/a), f(&(8))-

For each of the following functions (Problems 15-20), find f(x + Ax) — f(x).
15 fx)=4x+ 1 16 fx)=x* - x
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17 fx)=x"2 18 f(x) = x*
19 fe0=1x 0 fx)=4
21 Find the domain of the function f(x) = 1/(x* — 1).
22 Find the domain of the function f(z) = ./z* — 1.
23 What is the domain of the function f(x) = \ﬂ”
24 What is the domain of the function f(¢) = \/m ?
25 What is the domain of the function f(x) = l/m?
O 26 Show that if @ and b have the same sign then |a + b| = |a| + |b|, and if @ and b have

opposite signs then |a + b| < |a| + |b].

1.3 STRAIGHT LINES

DEFINITION

Let P(x,, yo) be a point and let m be a real number. The line through P with
slope m is the set of all points Q(x, y) with

¥ = Yo = m(x — Xo).

This equation is called the point-slope equation of the line (See Figure 1.3.1))

The vertical line through P is the set of all points Q(x, y) with x = x,. Vertical
lines do not have slopes.

}!
Q(x, »)
Y —=Yo
P(xo, ¥o)
/ X — X
e
/ 0 X
Figure 1.3.1

The slope is a measure of the direction of the line. Figure 1.3.2 shows lines
with zero, positive, and negative slopes.

The line that crosses the y-axis at the point (0, b) and has slope m has the
simple equation.

y=mx + b.

— T

Slope =0 Slope >0 Slope <0 Vertical
Figure 1.3.2 no slope
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This is called the slope-intercept equation for the line. We can get it from the point-
slope equation by setting x, = 0 and y, = b.

EXAMPLE 1 The line through the point P(— 1, 2) with slope m = —% (Figure 1.3.3)
has the point-slope equation
y—2=(x—(=1)(-4, or y-2=—Ix+1)
The slope-intercept equation is

y=—3x+ 13

y

P(—m Fs

Figure 1.3.3

We now describe the functions whose graphs are nonvertical lines.

DEFINITION

A linear function is a function f of the form
fx)y=mx + b,
where m and b are constants.
The graph of a linear function is just the line with slope-intercept equation
y = mx + b.

This is the line through (0, b) with slope m.
If two points on a line are known, the slope can be found as follows.

THEOREM 1

Suppose a line L passes through two distinct points P(xi, y1) and Q(x3, y,).
If x; = x,, then the line L is vertical. If x, # X,, then the slope of the line L is
equal to the change in y divided by the change in x,

Ay oy =y

Ax  X; — Xy

PROOF Suppose x; # Xx,, so L is not vertical. Let m be the slope of L. L has the
point-slope formula

y =y =mx — x)

Substituting y, for y and x, for x, we see that m = (y, — y;)/(x, — x3).

Theorem 1 shows why the slope of a line is a measure of its direction. Some-

17
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times Ax is called the run and Ay the rise. Thus the slope is equal to the rise divided
by the run. A large positive slope means that the line is rising steeply to the right,
and a small positive slope means the line rises slowly to the right. A negative slope
means that the line goes downward to the right. These cases are illustrated in
Figure 1.3.4.

o
Q P
A
g P_/ﬁ Ay
P - Ax Q
Ax Ax
Large positive Small positive Negative
slope slope slope

Figure 1.3.4

There is exactly one line L passing through two distinct points P(xy, y,)
and Q(x,, y,). If x; # x,, we see from Theorem [ that L has the equation

Ya—)
Y=y, = ( _xl)(x—xl).

X2 1

This is called the two-point equation for the line.

EXAMPLE 2 Given P(3, 1) and Q(1, 4), find the changes in x and y, the slope, and
the equation of the line through P and Q. (See Figure 1.3.5.)

Ax=1-3= -2, Ay=4—-1=3
The line through P and Q has slope Ay/Ax = —3, and its equation is
y—1=—3(x — 3).

V

N

Figure 1.3.5

EXAMPLE 3 Given P(1, —1) and Q(1, 2), as in Figure 1.3.6,
Ax=1-1=0, Ay=2—-(-1)=3.
The line through P and Q is the vertical line x = 1.
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o, 2)

P, =1)

Figure 1.3.6

EXAMPLE 4 A particle moves along the y-axis with constant velocity. At time
t = Osec,itisat the pointy = 3 ft. Attime ¢ = 2 sec,itisat the pointy = 11ft.
Find the velocity and the equation for the motion.

The velocity is defined as the distance moved divided by the time elapsed, so
the velocity is

Ay 11-3
PTAT 220

If the motion of the particle is plotted in the (¢, y) plane as in Figure 1.3.7,

= 4 ft/sec.

y
3
/]
le}
/
EN

Ay

At

Figure 1.3.7

the result is a line through the points P(0,3) and Q(2, 11). The velocity,
being the ratio of Ay to At, is just the slope of this line. The line has the
equation

y—3 =4t

Suppose a particle moving with constant velocity is at the point y = y, at
time ¢t = t,, and at the point y = y, at time ¢t = t,. Then the velocity is v = Ay/At.
The motion of the particle plotted on the (¢, y) plane is the line passing through the
two points (f,, y,) and (¢, , y,), and the velocity is the slope of this line.

An equation of the form

Ax + By +C =0
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where A and B are not both zero is called a linear equation. The reason for this name is
explained by the next theorem.

THEOREM 2
Every linear equation determines a line.

PROOF

Case 17 B = 0. The equation Ax + C = 0 can be solved for x, x = —C/A. Thisisa
vertical line.

Case 2 B # 0. In this case, we can solve the given equation for y, and the result is

) —-Ax - C Ax C
= ——mmm-m-m- )= — — — —
> B 7 BY B

This is a line with slope — A/B crossing the y-axis at — C/B.

EXAMPLE 5 Find the slope of the line 6x — 2y + 7 = 0.
The answerism = —A4/B = —6/(—=2) = 3.

To draw the graph of a linear equation, find two points on the line and
draw the line through them with a ruler.

EXAMPLE 6 Draw the graph of the line 4x + 2y + 3 = 0.
First solve for y as a function of x:

y=—2x — 3.

Next select any two values for x, say x = 0 and x = 1, and compute the
corresponding values of y.

When x=0y=—3
7
2

When x =1, y= -7

Finally, plot the two points (0, —3) and (1, —J), and draw the line through
them. (See Figure 1.3.8.)

(1,-9

Figure 1.3.8 dy + 2y +3 =0
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1.4 SLOPE AND VELOCITY; THE HYPERREAL LINE

PROBLEMS FOR SECTION 1.3

In Problems 1-8, find the slope and equation of the line through P and Q.

1 P(1,2), 03,4 2 P(1, —3), 0(0, 2)
3 P(—4,1), 0(—4,2 4 P2,5), Q2,7
5 P(3,0), 00, 1) 6 PO,0, Q10,9
7 P(1,3), 033 8 P, —-2), 0Q(,-2)
In Problems 9-16, find the equation of the line with slope m through the point P.
9 m=2, P(3,3) 10 m=3, P(-2,1)
11 m= -4  PQ, —4) 12 m=—1, PQ,4)
13 m=5 P@0,0) 14 m= =2, P(0,0)
15 m=0, P(7,4) 16 vertical line, P4, 5)

In Problems 17-22, a particle moves with constant velocity and has the given positions y at the

given times t. Find the velocity and the equation of motion.

17
18
19
20
21
22
23

24

y=0att=0, y=2att=1
y=3att=0, y=1latr=2
y=4att=1 y=2att=35
y=latt=2 y=3attr=3
y=4datt =0, y=4att=1
y=latt=3 y= —-2att=56

A particle moves with constant velocity 3, and at time t = 2 is at the point y = 8. Find
the equation for its motion.

A particle moves with constant velocity %, and at time ¢t = 0 is at y = 1. Find the
equation for its motion.

In Problems 25-30, find the slope of the line with the given equation, and draw the line.

25
27
29
3

32
33

34

3x -2y +5=0 26 x+y—-1=0
2x —y=0 28 6x +2y=0
Ix+4y=26 30 —2x +4y = —1

Show that the line that crosses the x-axis at a # 0 and the y-axis at b # O has the
equation (x/a) + (y/b) — 1 = 0.

What is the equation of the line through the origin with slope m?

Find the points at which the line ax + by + ¢ = 0 crosses the x- and y-axes. (Assume
that a # Oand b # 0.)

Let C denote Celsius temperature and F Fahrenheit temperature. Thus, C = 0 and
F = 32 at the freezing point of water, while C = 100 and F = 212 at the boiling point
of water. Use the two-point formula to find the linear equation relating C and F.

SLOPE AND VELOCITY; THE HYPERREAL LINE

In Section 1.2 the slope of the line through the points (x;, y,) and (x,, y,) is shown
to be the ratio of the change in y to the change in x,

dope = XY _ Y201
Pe= Ax Xy — Xy

21
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If the line has the equation
y = mx + b,

then the constant m is the slope.

What is meant by the slope of a curve? The difterential calculus is needed to
answer this question, as well as to provide a method of computing the value of the
slope. We shall do this in the next chapter. However, to provide motivation, we now
describe intuitively the method of finding the slope.

Consider the parabola

The slope will measure the direction of a curve just as it measures the direction of a
line. The slope of this curve will be different at different points on the x-axis, because
the direction of the curve changes.

If (xg,)0) and (xp + Ax,yo + Ay) are two points on the curve, then the
“average slope” of the curve between these two points is defined as the ratio of the
change in y to the change in x,

Ay
average slope = —.
Ax
This is exactly the same as the slope of the straight line through the points (xg, o)
and (xo + Ax, vy + Ay), as shown in Figure [.4.1.

(xo+ Ax, yo+ Ay)
(x9, Vo) Ay

Ax

Figure 1.4.1

Let us compute the average slope. The two points (x,, y,) and (x; + Ax, vy + A))
are on the curve, so

-VO = xés
.}‘0 + A}’ = (xo + A,\')z.
Subtracting, Ay = (xg -+ AX)? — x2.
Ay X A_..’.#v,z
Dividing by Ax, Ay (xo + AY) X
Ax Ax

This can be simplified,
Ay xg + 2xg Ax + (Ax)? — X3
Ax Ax

B Ax

= 2x, + Ax.
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Thus the average slope is

% = 2x, + Ax.
Notice that this computation can only be carried out when Ax # 0, because at
Ax = 0 the quotient Ay/Ax is undefined.

Reasoning in a nonrigorous way, the actual slope of the curve at the point
(X0, yo) can be found thus. Let Ax be very small (but not zero). Then the point
(xo + Ax,yy + Ay)is close to (xq, yo), so the average slope between these two points
is close to the slope of the curve at (x,, yq);

[slope at (xg, }o)] is close to 2x, + Ax.
We neglect the term Ax because it is very small, and we are left with
(slope at (xo, yo)] = 2x,.

For example, at the point (0, 0) the slope is zero, at the point (1, 1) the slope is 2, and
at the point (—3, 9) the slope is — 6. (See Figure 1.4.2)

y
(=39
slope = —6
slope =2
o
Figure 1.4.2 y=x? ©. 0™ slope = 0 *

The whole process can also be visualized in another way. Let ¢ represent time,
and suppose a particle is moving along the y-axis according to the equation y = t2.
That is, at each time r the particle is at the point 2 on the y-axis. We then ask: what
is meant by the velocity of the particle at time ¢,? Again we have the difficulty that the
velocity is different at different times, and the calculus is needed to answer the question
in a satisfactory way. Let us consider what happens to the particle between a time ¢,
and a later time ¢, + At. The time elapsed is At, and the distance moved is Ay =
2ty At + (At)?. If the velocity were constant during the entire interval of time, then it
would just be the ratio Ay/At. However, the velocity is changing during the time
interval. We shall call the ratio Ay/At of the distance moved to the time elapsed the
“average velocity” for the interval;

Vave = % = 2ty + At.
The average velocity is not the same as the velocity at time t, which we are after. As a
matter of fact, for ¢, > 0, the particle is speeding up; the velocity at time ¢, will be
somewhat less than the average velocity for the interval of time between ¢, and ¢, + At,
and the velocity at time ¢, + At will be somewhat greater than the average.

23
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But for a very small increment of time At, the velocity will change very little,
and the average velocity Ay/At will be close to the velocity at time t,. To get the
velocity v, at time t,, we neglect the small term At in the formula

Uave = 2[0 + A[’
and we are left with the value
Vo = 2t4.

When we plot y against ¢, the velocity is the same as the slope of the curve
y = t%, and the average velocity is the same as the average slope.

The trouble with the above intuitive argument, whether stated in terms of
slope or velocity, is that it is not clear when something is to be “neglected.” Neverthe-
less, the basic idea can be made into a useful and mathematically sound method of
finding the slope of a curve or the velocity. What is needed is a sharp distinction
between numbers which are small enough to be neglected and numbers which aren’t.
Actually, no real number except zero is small enough to be neglected. To get around
this difficulty, we take the bold step of introducing a new kind of number, which is
infinitely small and yet not equal to zero.

A number ¢ is said to be infinitely small, or infinitesimal, if

—a<e<a

for every positive real number a. Then the only real number that is infinitesimal is
zero. We shall use a new number system called the hyperreal numbers, which contains
all the real numbers and also has infinitesimals that are not zero. Just as the real
numbers can be constructed from the rational numbers, the hyperreal numbers can
be constructed from the real numbers. This construction is sketched in the Epilogue
at the end of the book. In this chapter, we shall simply list the properties of the
hyperreal numbers needed for the calculus.

First we shall give an intuitive picture of the hyperreal numbers and show
how they can be used to find the slope of a curve. The set of all hyperreal numbers is
denoted by R*. Every real number is a member of R*, but R* has other elements too.
The infinitesimals in R* are of three kinds: positive, negative, and the real number 0.
The symbols Ax, Ay, ... and the Greek letters ¢ (epsilon) and 6 (delta) will be used for
infinitesimals. If ¢ and b are hyperreal numbers whose difference ¢ — b is infinitesimal,
we say that a is infinitely close to b. For example, if Ax is infinitesimal then x, + Ax is
infinitely close to x,. If ¢ is positive infinitesimal, then —¢ will be a negative infinitesi-
mal. 1/¢ will be an infinite positive number, that is, it will be greater than any real
number. On the other hand, — 1/e will be an infinite negative number, ie., a number
less than every real number. Hyperreal numbers which are not infinite numbers are
called finite numbers. Figure 1.4.3 shows a drawing of the hyperreal line. The circles
represent “infinitesimal microscopes” which are powerful enough to show an infinitely
small portion of the hyperreal line. The set R of real numbers is scattered among the
finite numbers. About each real number ¢ is a portion of the hyperreal line composed
of the numbers infinitely close to ¢ (shown under an infinitesimal microscope for
¢ = 0 and ¢ = 100). The numbers infinitely close to 0 are the infinitesimals.

In Figure 1.4.3 the finite and infinite parts of the hyperreal line were separated
from each other by a dotted line. Another way to represent the infinite parts of the
hyperreal line is with an “infinite telescope” as in Figure 1.4.4. The field of view of an
infinite telescope has the same scale as the finite portion of the hyperreal line, while
the field of view of an infinitesimal microscope contains an infinitely small portion
of the hyperreal line biown up.
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Figure 1.4.4

We have no way of knowing what a line in physical space is really like.
It might be like the hyperreal line, the real line, or neither. However, in applications
of the calculus it is helpful to imagine a line in physical space as a hyperreal line.
The hyperreal line is, like the real line, a useful mathematical model for a line in
physical space.

The hyperreal numbers can be algebraically manipulated just like the real
numbers. Let us try to use them to find slopes of curves. We begin with the parabola
y = x%

Consider a real point (x,, yo) on the curve y = x?. Let Ax be either a positive
or a negative infinitesimal (but not zero), and let Ay be the corresponding change in y.
Then the slope at (xg, yo) is defined in the following way:

. A
[slope at (x4, yo)] = [the real number infinitely close to A_y}
X

Ay Ay (xy + Ax)? — x2
We compute Ax as before: A —O—T—o = 2x, + Ax.

This is a hyperreal number, not a real number. Since Ax is infinitesimal, the hyperreal
number 2x, + Ax is infinitely close to the real number 2x,. We conclude that

[slope at (xq, yo)] = 2x,.
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—_ y?2
y==x (x0, o)

Figure 1.4.5 Figure 1.4.6

(xotAx, yotAay)

Figure 1.4.7

The process can be illustrated by the picture in Figure 1.4.5, with the infinitesimal
changes Ax and Ay shown under a microscope.

The same method can be applied to other curves. The third degree curve
y = x* is shown in Figure 1.4.6. Let (x,, yo) be any point on the curve y = x3, and
let Ax be a positive or a negative infinitesimal. Let Ay be the corresponding change in
y along the curve. In Figure 1.4.7, Ax and Ay are shown under a microscope. We again
define the slope at (xq, yo) by

. A
[slope at (xq, ¥o)] = [the real number infinitely close to A_y}
X

We now compute the hyperreal number Fy
X
Yo =x5,

Vo + Ay = (xo + Ax)?
Ay = (xo + Ax)* — x3.
)

s

Ay (xo + AxP — xp
Ax Ax
X5+ 3xF Ax + 3x0(Ax)? + (Ax)® — x3
h Ax
3x2 Ax + 3x0(Ax%)? + (Ax)?
- Ax

4
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Ay
E = 3X(2) + 3x0 Ax + (Ax)z.

In the next section we shall develop some rules about infinitesimals which
will enable us to show that since Ax is infinitesimal,

3x Ax + (Ax)?

and finally

is infinitesimal as well. Therefore the hyperreal number
3x2 + 3x, Ax + (Ax)?
is infinitely close to the real number 3x3, whence
[slope at (xq, yo)] = 3x3.

For example, at (0, 0) the slope is zero, at (1, 1) the slope is 3, and at (2, 8) the
slope is 12.

We shall return to the study of the slope of a curve in Chapter 2 after we have
learned more about hyperreal numbers. From the last example it is evident that we
need to know how to show that two numbers are infinitely close to each other. This is
our next topic.

INFINITESIMAL, FINITE, AND INFINITE NUMBERS

Let us summarize our intuitive description of the hyperreal numbers from Section 1.4.
The real line is a subset of the hyperreal line; that is, each real number belongs to
the set of hyperreal numbers. Surrounding each real number r, we introduce a
collection of hyperreal numbers infinitely close to ». The hyperreal numbers infinitely
close to zero are called infinitesimals. The reciprocals of nonzero infinitesimals are
infinite hyperreal numbers. The collection of all hyperreal numbers satisfies the
same algebraic laws as the real numbers. In this section we describe the hyperreal
numbers more precisely and develop a facility for computation with them.

This entire calculus course is developed from three basic principles relating
the real and hyperreal numbers: the Extension Principle, the Transfer Principle,
and the Standard Part Principle. The first two principles are presented in this section,
and the third principle is in the next section.

We begin with the Extension Principle, which gives us new numbers called
hyperreal numbers and extends all real functions to these numbers. The Extension
Principle will deal with hyperreal functions as well as real functions. Our discussion
of real functions in Section 1.2 can readily be carried over to hyperreal functions.
Recall that for each real number q, a real function f of one variable either associates
another real number b = f(a) or is undefined. Now, for each hyperreal number
H, a hyperreal function F of one variable either associates another hyperreal number
K = F(H) or is undefined. For each pair of hyperreal numbers H and J, a hyperreal
function G of two variables either associates another hyperreal number K = G(H, J)
or is undefined. Hyperreal functions of three or more variables are defined in a

similar way.

I. THE EXTENSION PRINCIPLE

(a) The real numbers form a subset of the hyperreal numbers, and the order
relation x < y for the real numbers is a subset of the order relation for
the hyperreal numbers.
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(b) There is a hyperreal number that is greater than zero but less than every
positive real number,

(c) For every real function f of one or more variables we are given a corre-
sponding hyperreal function f* of the same number of variables. f* is
called the natural extension of f.

Part (a) of the Extension Principle says that the real line is a part of the
hyperreal line. To explain part (b) of the Extension Principle, we give a careful
definition of an infinitesimal.

DEFINITION

A hyperreal number b is said 1o be:
positive infinitesimal if b is positive but less than every positive real number.

negative infinitesimal if b is negative but greater than every negative real
number.

infinitesimal if b is either positive infinitesimal, negative infinitesimal, or zero.

With this definition, part (b) of the Extension Principle says that there is at
least one positive infinitesimal. We shall see later that there are infinitely many
positive infinitesimals. A positive infinitesimal is a hyperreal number but cannot be
a real number, so part (b) ensures that there are hyperreal numbers that are not
real numbers.

Part (c) of the Extension Principle allows us to apply real functions to
hyperreal numbers. Since the addition function + is a real function of two variables,
its natural extension +* is a hyperreal function of two variables. If x and y are
hyperreal numbers, the sum of x and y is the number x +* y formed by using the
natural extension of +. Similarly, the product of x and y is the number x «* y formed
by using the natural extension of the product function .. To make things easier
to read, we shall drop the asterisks and write simply x + y and x+ y for the sum
and product of two hyperreal numbers x and y. Using the natural extensions of
the sum and product functions, we will be able to develop algebra for hyperreal
numbers. Part (c) of the Extension Principle also allows us to work with expressions
such as cos (x) or sin (x + cos (y)), which involve one or more real functions, We
call such expressions real expressions. These expressions can be used even when
x and y are hyperreal numbers instead of real numbers. For example, when x and y
are hyperreal, sin (x + cos (y)) will mean sin* (x + cos* (y)), where sin* and cos*
are the natural extensions of sin and cos. The asterisks are dropped as before.

We now state the Transfer Principle, which allows us to carry out compu-
tations with the hyperreal numbers in the same way as we do for real numbers.
Intuitively, the Transfer Principle says that the natural extension of each real function
has the same properties as the original function.

Il. TRANSFER PRINCIPLE

Every real statement that holds for one or more particular real functions holds
Jor the hyperreal natural extensions of these functions.

Here are seven examples that illustrate what we mean by a real statement.
In general, by a real statement we mean a combination of equations or inequalities
about real expressions, and statements specifying whether a real expression is defined
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or undefined. A real statement will involve real variables and particular real functions.

(1) Closure law for addition: for any x and y, the sum x + y is defined.

(2) Commutative law for addition: x + y = y + x.

(3) Arulefor order: If 0 < x < y,then 0 < 1/y < 1/x.

(4) Division by zero is never allowed: x/0 is undefined.

(5) An algebraic identity: (x — y)* = x? — 2xy + y2.

(6) A trigonometric identity: sin® x + cos? x = 1.

(7) A rule for logarithms: If x > 0 and y > 0, then log,, (xy) = log;o X
+ logio ¥

Each example has two variables, x and y, and holds true whenever x and y are real
numbers. The Transfer Principle tells us that each example also holds whenever x
and y are hyperreal numbers. For instance, by Example (3), x/0 is undefined, even
for hyperreal x. By Example (6), sin® x + cos? x = 1, even for hyperreal x.

Notice that the first five examples involve only the sum, difference, product,
and quotient functions. However, the last two examples are real statements involving
the transcendental functions sin, cos, and log,,. The Transfer Principle extends all
the familiar rules of trigonometry, exponents, and logarithms to the hyperreal
numbers.

In calculus we frequently make a computation involving one or more
unknown real numbers. The Transfer Principle allows us to compute in exactly
the same way with hyperreal numbers. It “transfers” facts about the real numbers
to facts about the hyperreal numbers. In particular, the Transfer Principle implies
that a real function and its natural extension always give the same value when applied
to a real number. This is why we are usually able to drop the asterisks when computing
with hyperreal numbers.

A real statement is often used to define a new real function from old real
functions. By the Transfer Principle, whenever a real statement defines a real function,
the same real statement also defines the hyperreal natural extension function. Here
are three more examples.

(8) The square root function is defined by the real statement y = \/;c if,
and only if, y* = x and y > 0.
(9) The absolute value function is defined by the real statement y = |x|
if, and only if, y = /X
(10) The common logarithm function is defined by the real statement

y = log,, x if, and only if, 10" = x.

In each case, the hyperreal natural extension is the function defined by the given
real statement when x and y vary over the hyperreal numbers. For example, the
hyperreal natural extension of the square root function, f *,is defined by Example (8)
when x and y are hyperreal.

An important use of the Transfer Principle is to carry out computations
with infinitesimals. For example, a computation with infinitesimals was used in the
slope calculation in Section 1.4. The Extension Principle tells us that there is at
least one positive infinitesimal hyperreal number, say &. Starting from &, we can use
the Transfer Principle to construct infinitely many other positive infinitesimals. For
example, &® is a positive infinitesimal that is smaller than e 0 < &* < & (This
follows from the Transfer Principle because 0 < x* < x for all real x between 0
and 1.) Here are several positive infinitesimals, listed in increasing order:

g3, %, &/100, &, 75, \/;,, g+ \/g

29
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We can also construct negative infinitesimals, such as —& and —e¢?, and other hyper-
real numbers such as 1 + \/E, (10 — &), and 1/e.

We shall now give a list of rules for deciding whether a given hyperreal
number is infinitesimal, finite, or infinite. All these rules follow from the Transfer
Principle alone, First, look at Figure 1.5.1, illustrating the hyperreal line.

Infinitesimal
e e
0
________ 3210123
Negative Finite Positive
infinite infinite
Figure 1.5.1
DEFINITION

A hyperreal number b is said to be:

finite if b is between two real numbers.
positive infinite if b is greater than every real number,
negative infinite if b is less than every real number.

Notice that each infinitesimal number is finite. Before going through the
whole list of rules, let us take a close look at two of them.

If ¢ is infinitesimal and a is finite, then the product a « ¢ is infinitesimal. For
example, 3¢, — 6¢, 1000¢, (5 — ¢)e are infinitesimal. This can be seen intuitively from
Figure 1.5.2; an infinitely thin rectangle of length a has infinitesimal area.

If ¢ is positive infinitesimal, then 1/e is positive infinite. From experience we
know that reciprocals of small numbers are large, so we intuitively expect 1/e to
be positive infinite. We can use the Transfer Principle to prove 1/e is positive infinite.
Let r be any positive real number. Since ¢ is positive infinitesimal, 0 < & < 1/r.
Applying the Transfer Principle, 1/¢ > r > 0. Therefore, 1/¢ is positive infinite.

e — — Arca=aqa-¢€

Figure 1.5.2

RULES FOR INFINITESIMAL, FINITE, AND INFINITE NUMBERS Assume that £, d
are infinitesimals; b, ¢ are hyperreal numbers that are finite but not infinitesimal;
and H, K are infinite hyperreal numbers.

(i)  Real numbers:
The only infinitesimal real humber is 0.
Every real number is finite.

(ily  Negatives:
—¢& Is infinitesimal,



(iif)

(iv)

W)

(vi)

(vii)
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— b is finite but not infinitesimal.

— H is infinite.

Reciprocals:

If e # 0, 1/¢ is infinite.

1/b is finite but not infinitesimal.

1/H is infinitesimal.

Sums :

& + 9 is infinitesimal.

b + ¢ is finite but not infinitesimal.

b + c is finite (possibly infinitesimal).
H + g and H + b are infinite.
Products:

O+ & and b « ¢ are infinitesimal.

b « ¢ is finite but not infinitesimal.

H « b and H « K are infinite.
Quotients :

e/b, e/H, and b{H are infinitesimal.
bjc is finite but not infinitesimal.

ble, Hfe, and H[b are infinite, provided that ¢ # 0.
Roots:

Ife > 0, \’72 is infinitesimal.

Ifb > 0, \"@ is finite but not infinitesimal.

IfH > 0, \'/Eis infinite.

Notice that we have given no rule for the following combinations:

&/8, the quotient of two infinitesimals.

H/K, the quotient of two infinite numbers.

He, the product of an infinite number and an infinitesimal.
H + K, the sum of two infinite numbers.

Each of these can be either infinitesimal, finite but not infinitesimal, or infinite,
depending on what ¢, 6, H, and K are. For this reason, they are called indeterminate

Jorms.

Here are three very different quotients of infinitesimals.

2

&, L ..
— is infinitesimal (equal to &).
&

. . . e
- is finite but not infinitesimal (equal to 1).
€

& . . . 1
— is infinite | equal to; .
€

Table 1.5.1 on the following page shows the three possibilities for each indeterminate

form. Here are some examples which show how to use our rules.

EXAMPLE 1

Consider (b — 3g)/(c + 26). ¢ is infinitesimal, so — 3¢ is infinitesimal,
and b — 3¢ is finite but not infinitesimal. Similarly, ¢ + 24 is finite but not

infinitesimal. Therefore the quotient

b — 3¢
¢+ 20

is finite but not infinitesimal.

31
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Table 1.5.1
Examples
indeterminate finite '
form infinitesimal (equal to 1) infinite
¢ e ¢ £
3 € & e?
H H H LS
K H? H H
1 1 , 1
He H. g H T H T
H+ K H+(—H) (H+ 1)+ (—H) H+H

The next three examples are quotients of infinitesimals.

EXAMPLE 2 The quotient
Set — 8e + ¢
3e

is infinitesimal, provided ¢ # 0.

The given number is equal to
¢} 363 — 8e? + Le

We see in turn that g, &%, £3, 3¢, —$e?, 3¢* are infinitesimal; hence the sum (1)

is infinitesimal.

EXAMPLE 3 Ife # 0, the quotient
3¢ + &* — 6¢
26’ + ¢
is finite but not infinitesimal.
Cancelling an ¢ from numerator and denominator, we get

32 +e6—6
2 -
) 2+ 1

Since 3¢? + ¢ is infinitesimal while —6 is finite but not infinitesimal, the
numerator

3P +e—6

is finite but not infinitesimal. Similarly, the denominator 2¢ + 1, and hence
the quotient (2) is finite but not infinitesimal.

EXAMPLE 4 Ife # 0, the quotient

g* — g% 4 2¢?

5¢4 + ¢?
is infinite.
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We first note that the denominator 5¢* + ¢* is not zero because it can be
written as a product of nonzero factors,
Se* 4 g3 =geg-6+(5e + 1)
When we cancel &2 from the numerator and denominator we get
g —& +2
567 + g
We see in turn that:

&2 — ¢ + 2 is finite but not infinitesimal,
5¢% + ¢ is infinitesimal,
2 —e+2, . .
—— - is infinite.
S5e° + &

EXAMPLE 5 ju is finite but not infinitesimal
H*-H+ 2 '
In this example the trick is to multiply both numerator and denominator by
1/H? We get
2+ 1/H
1 —1/H +2/H*
Now 1/H and 1/H? are infinitesimal. Therefore both the numerator and
denominator are finite but not infinitesimal, and so is the quotient.

In the next theorem we list facts about the ordering of the hyperreals.

THEOREM 1

(i) Every hyperreal number which is between two infinitesimals is infinitesi-

mal.

(ii) Every hyperreal number which is between two finite hyperreal numbers is
finite.

(iii) Every hyperreal number which is greater than some positive infinite
number is positive infinite.

(iv)  Every hyperreal number which is less than some negative infinite number
is negative infinite.

All the proofs are easy. We prove (iii), which is especially useful. Assume H is
positive infinite and H < K. Then for any real number r, r < H < K.
Therefore, r < K and K is positive infinite.

EXAMPLE 6 If H and K are positive infinite hyperreal numbers, then H + K is
positive infinite. This is true because H + K is greater than H.

Our last example concerns square roots.
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EXAMPLE 7 If H is positive infinite then, surprisingly,
JH+1 - /H -1

is infinitesimal.
This is shown using an algebraic trick.
JH+ 1 - JH - 1=(\/H+1—\/H*1)(\/H+1+\/H4ﬁ
JH+ 1+ JH -1
(H+ ) —(H -1 _ 2

JH+ IV JH -1 JHA 1+ JE 1

The numbers H + 1, H — 1, and their square roots are positive infinite, and
thus the sum \/H + 1+ \/H — 1 is positive infinite. Therefore the quotient

JEG 1= JH-1= 2

JH+ 1+ JH -1

a finite number divided by an infinite number, is infinitesimal.

PROBLEMS FOR SECTION 1.5

In Problems 1-40, assume that: & & are positive infinitesimal, H, K are positive infinite.
Determine whether the given expression is infinitesimal, finite but not infinitesimal, or infinite.

1 76,000,000z 2 3¢ + 45
3 L+ 1/ 4 - 2246 +1
5 1h/e 6 &/ H
7 H/1,000,000 8 B3+¢?-9
I + &+ 3¢
9 — s teree
B+ ed+d)—12 10 e g
2e% — gt 263 — gt
H 4 — g2+ &° 12 4% 4 ¢t
_4g? ]
3 e 4 4 e
gt + 5¢ \/E+ 1
15 : 16 LA
\/g—s £
17 1-56 18 1-53
£ &
If 1 1 2H + 1
19 - = L
8(3 + e 3) 20 IJH+ 2
2H* +3H -6 H+4+¢
2 dH3 + 5 2 HY+ 2
H+ K H-K
23 HK e H> + K?
25 H* - H 26 JH+1 -~ /H
11?2 142 e\? el?
27 H+ —| —|{H-— - 8 —] - -
+ g ( H) 2 H+ 7 (H H)
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€ £ \/m

31 H( 3+Ii{—\/3) 32 /H

JH+1+ JH+2

3 H(/H+ 2 - JH) 34 1-yite VZHS
35 JH - YH +1 36 H-J/H+1/H+2

B+ )4+ 0)— 12 5+¢ 5
37 v remrer e 38 L
&d 74+6 7
39 _e+d 40 _H+ K
Vet + o JH + K?
(Hint: Assume ¢ >
and divide through by ¢.)
41 In (a)H(f) below, determine which of the two numbers is greater.
1 1
(a) & or £ (b) 3 o 5 (¢ H or H?
d & or /e € H or JH (f) JH or JH
42 Let x, y be positive hyperreal numbers. Can % + % be infinite? Finite? Infinitesimal?
43 Let a and b be real. When is (3¢ — ¢ + a)/(4e® + 2 + b)

(a) infinitesimal?
(b) finite but not infinitesimal?
(c) infinite?
44 Let a and b be real. When is (aff2 — 2H + S)/(bH* + H — 2)
(a) infinitesimal?
(b) finite but not infinitesimal?
(¢} infinite?

STANDARD PARTS

In this section we shall develop a method that will enable us to compute the slope
of a curve by means of infinitesimals. We shall use the method to find slopes of
curves in Chapter 2 and to find areas in Chapter 4. The key step will be to find the
standard part of a given hyperreal number, that is, the real number that is infinitely

close to it.

DEFINITION

Two hyperreal numbers b and c are said to be infinitely close to each other, in
symbols b = c, if their difference b — c is infinitesimal. b % ¢ means that b is
not infinitely close to c.

Here are three simple remarks.

(1) If e is infinitesimal, then b ~ b + ¢. This is.true because the difference,
b — (b + &) = —¢, is infinitesimal.
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(2)  bis infinitesimal if and only if b ~ 0. The formula b ~ 0 will be used as a
short way of writing “b is infinitesimal. ”

(3) Ifb and c are real and b is infinitely close to ¢, then b equals c.
b — ¢ is real and infinitesimal, hence zero; so b = c.

The relation = between hyperreal numbers behaves somewhat like equality,
but, of course, is not the same as equality. Here are three basic properties of .

THEOREM 1

Let a, b and ¢ be hyperreal numbers.

) a=a.
(i) Ifa=b,thenb = a.
(iii) Ifax~bandb ~c, thena = c.

These properties are useful when we wish to show that two numbers are
infinitely close to each other.

The reason for (i) is that @ — a is an infinitesimal, namely zero. For (ii), we
note that if ¢ — b is an infinitesimal &, then b-— a = —¢, which is also infinitesimal.
Finally, (iii) is true because @ — ¢ is the sum of two infinitesimals, namely a — b and
b—ec

THEOREM 2

Assume a =~ b. Then

() Ifais infinitesimal, so is b.
(i) Ifais finite, so is b.
(iiiy Ifa is infinite, so is b.

The real numbers are sometimes called “standard” numbers, while the
hyperreal numbers that are not real are called “nonstandard” numbers. For this
reason, the real number that is infinitely close to & is called the “standard part” of b.
An infinite number cannot have a standard part, because it can’t be infinitely close
to a finite number (Theorem 2). Our third principle (stated next) on hyperreal
numbers is that every finite number has a standard part.

Il. STANDARD PART PRINCIPLE

Every finite hyperreal number is infinitely close to exactly one real number.

DEFINITION

Let b be a finite hyperreal number. The standard part of b, denoted by st(b), is
the real number which is infinitely close to b. Infinite hyperreal numbers do
not have standard parts.
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Here are some facts that follow at once from the definition.
Let b be a finite hyperreal number.

(1)  si(b) is a real number.
(2) b = st(b) + & for some infinitesimal e.
(3) Ifbisreal, then b = st(b).

Our next aim is to develop some skill in computing standard parts. This will
be one of the basic methods throughout the Calculus course. The next theorem is the
principal tool.

THEOREM 3

Let a and b be finite hyperreal numbers. Then

(1) st(—a) = —st(a).

(i1} stla + b) = st{a) + st(b).

(iii) stla — b) = st(a) — st(b).

(iv) st(ab) = st(a) « st(b).

(v) If st(b) # O, then st(a/b) = st(a)/st(b).

(vi) st(a") = (st{a))".

(vii) Ifa =0, then st({/a) = Jst(a).
(viiiy Ifa < b, then st(a) < si(b).
This theorem gives formulas for the standard parts of the simplest expressions.
All of the rules in Theorem 3 follow from our three principles for hyperreal

numbers. As an illustration, let us prove the formula (iv) for st(ab). Let r be the
standard part of a and s the standard part of b, so that

a=r+s, b=s+56,
where ¢ and 6 are infinitesimal. Then
ab=(r + &)(s + 96)
=rs+rd + s+ &d X rs.
Therefore st{ab) = rs = st(a) » st(b).

Often the symbols Ax, Ay, etc. are used for infinitesimals. In the following
examples we use the rules in Theorem 3 as a starting point for computing standard
parts of more complicated expressions.

EXAMPLE 1 When Ax is an infinitesimal and x is real, compute the standard part of
3x? + 3x Ax + (Ax)%
Using the rules in Theorem 3, we can write

st(3x? + 3x Ax + (Ax)?) = st(3x?) + st(3x Ax) + st((Ax)?)
= 3x? + st(3x) » st(Ax) + st(Ax)?
=3x% 4+ 3x .0 + 0% = 3x2
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EXAMPLE 2 Ifst(c) = 4 and ¢ # 4, find
c* + 2c— 24
S c* - 16 '
We note that the denominator has standard part 0,
st(c? — 16) = st(c)* — 16 = 4* — 16 = 0.
However, since ¢ # 4 the fraction is defined, and it can be simplified by
factoring the numerator and denominator,
¢ +2c-24 (c+6)c—4) c+6
=16  (c+dc—4) c+4
¢t + 2c— 24
¢z — 16

¢+ 6}  si(c + 6)
c+ 4]  stlc+4)
s+ 6 4+6 10

Tstle)+4 4+4 8

Then st

We now have three kinds of computation available to us. First, there are
computations involving hyperreal numbers. In Example 2, the two steps giving
c2+2c—24_c+6
2—16 c+4

are computations of this kind. The computations of this first kind are justified by the
Transfer Principle.

Second, we have computations which involve standard parts. In Example 2,
the three steps giving

2 +2c—-24 st(c)+ 6
2 —16  stc)+ 4

st

are of this kind. This second kind of computation depends on Theorem 3.
Third there are computations with ordinary real numbers. Sometimes the
real numbers will appear as standard parts. In Example 2, the last two steps which give
sticy + 6 10

stc) + 4 8
are computations with ordinary real numbers.

Usually, in computing the standard part of a hyperreal number, we use the
first kind of computation, then the second kind, and then the third kind, in that order.
We shall give two more somewhat different examples and pick out these three stages
in the computations.

EXAMPLE 3 If H is a positive infinite hyperreal number, compute the standard part
of
c:2H3+5H2—3H
7H? — 2H? 4 4H'
In this example both the numerator and denominator are infinite, and we

have to use the first type of computation to get the equation into a different
form before we can take standard parts.




1.6 STANDARD PARTS

First stage

2H3 +5H> ~3H H™®.QH®+5H> —3H) 2+ 5H ' —3H?
TTH? _2H* +4H H 3.(JH® —2H® +4H) 7 —-2H '+ 4H %

Second stage  H ™' and H™? are infinitesimal, so

24 5SH '=3H Y si2+S5H ' —3H?%
7—2H ' +4H %) st(7T—2H '+ 4H™?)
st +sSH ) —stBH?) 2+0-0

T ost(7) — stRH Y+ st4H7?) T 7T—-040

2+0-0 2
Third stage st(c) = L

st(c) = st

EXAMPLE 4 If e is infinitesimal but not zero, find the standard part of

€

5_ /25 +¢

Both the numerator and denominator are nonzero infinitesimals.

b:

First stage 'We multiply both numerator and denominator by 5 + /25 + «.

g _ g5+ ./25+¢)
~J254+¢ (5—-/25+605+/25+¢)
&5+ /25 + ¢) 8(5+\/25+8)

25 — (25 + ¢)
= —-5-./25+=
Second stage si(b) = st(—5 — /25 + &) = st(—5) — st /25 + &)
= —5— /st25 + &) = —5 — . /25.

Third stage stby= -5 — /25 = —10.

EXAMPLE 5 Remember that infinite hyperreal numbers do not have standard parts.
Consider the infinite hyperreal number

3+¢
4e + &%’

where ¢ is a nonzero infinitesimal. The numerator and denominator have
standard parts

st(3 + &) = 3, st(de + &%) = 0.

However, the quotient has no standard part. In other words,

3+¢
t is undefined.
4 + 82) v
PROBLEMS FOR SECTION 1.6

Compute the standard parts of the following.
1 2 + £ + 32, ¢ infinitesimal
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10
11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

1 REAL AND HYPERREAL NUMBERS

b+ 2e — &2,

2 -3

5+ d¢

v+ 252 Ay + Ay,
(x? + 3xAx + Ax?)S,

x4+ Ax + Jx — Ax,

e — e + 4e
3e? 4 26— 3
R S

2¢? ’
4e* — 363 4 282
3e* — 263 + g2
2+e+ )3 —¢8d),

Ja+e/a+ 9,
2H + 4
3H -6
6H ~ 17
H +2
3H> - SH + 2
H*+1 °
H+1+¢
2H — 1 + 3¢
H* 4+ 3H* 4+ 1
4H* + 2H* - 1’
22 ¢+ 1
3eT+6b+ 1

x+8+8—xp

e

(x + Ax)* - x?
Ax '

(x + Ax)® — x3
Ax ’

fa+¢) — 1a
I —

b? — 25
b—5"
4 —q

2 - Ja
3—-Jec+2

c—7
3 - c+5
c—7 '
a’—Sa+6

a—3

st(b) = 5, ¢ infinitesimal
¢ infinitesimal

yreal, Ay infinitesimal
x real, Ax infinitesimal

x positive real, Ax infinitesimal

¢ infinitesimal
£ # 0 infinitesimal

¢ # 0 infinitesimal

g, & Infinitesimal

sta) = 3, &, 0 infinitesimal

H infinite
H infinite
H infinite
H infinite, ¢ infinitesimal
H infinite

sth) =2, stle)= —1
sth) =3, st(c) =2

x, yreal, & # O infinitesimal
x real, Ax # 0 infinitesimal

x real, Ax # 0 infinitesimal

a # Oreal, ¢ # 0 infinitesimal
b#5 and stb)=5

a#4 and stla)=4

c#7 and st(c)=7

st(c) = 5

a#3 and sta) =



EXTRAPROBLEMS FOR CHAPTER 1

26— b—6

28 Tl b#2 and st(b) =2
245 6

29 22:4—213, c# -3 and sHc)= —3
J25—e-5

30 —:—, ¢ #0 and einfinitesimal

31 1( ! 1) £¢# 0 and ¢ infinitesimal
=, c
& /4 + ¢ 2

/ 1 e
32 2H ( 1+ 2 1) R H positive infinite

33 __VH+1L
V2H+ JH-1

34 H*+H+1—-H, H positive infinite

H positive infinite

In the following problems let a, b, a, , b, be hyperreal numbers with a ~ ay,b=xb,.

35 Show thata + b =~ a; + b,.

Hint: Puta, = a + & b, = b + 4, and compute the difference (¢, + b)) — (a + b).
36 Show that if g, b are finite, then ab =~ ab,.
37 Show thatifa = b = H,a; = b, = H + 1/H, then ab % a,b,. (H positive infinite).

EXTRA PROBLEMS FOR CHAPTER 1

1 Find the distance between the points P(2, 7) and Q(1, —4).

Find the slope of the line through the points P(2, —6) and Q(3, 4).
Find the slope of the line through P(3, 5) and Q(6, 0).

Find the equation of the line through P(4, 4) and Q(5,9).

Find the equation of the line through P(4, 5) with slope m = —2.

Find the velocity and equation of motion of a particle which moves with constant
velocity and has positions y = 2att =0,y = Satr = 2.

7 Find the equation of the circle with radius \[5 and center at (1, 3).
8 Find the equation of the circle that has center (1, 0) and passes through the point (0, 1).

R W N

Let ¢ be positive infinitesimal. Determine whether the following are infinitesimal, finite but not
infinitesimal, or infinite.
9 (4e + 5)(2¢ + 6) 10 (4e + 5)(e* — &)

11 1/e — 2/¢? 12 1—-J1—¢

Let H be positive infinite. Determine whether the following are infinitesimal, finite but not
infinitesimal, or infinite.

H-2
1 _ 14 H =2
3 (H — 2)QQH +5) ST 3
H+6 .
15 e 16 H*+ 1-H

Compute the standard parts in Problems 17-22.
17 (b + 2)(3b — 4g), st(b) = 4, ¢ infinitesimal

18 2+ & +3¢2, ¢infinitesimal
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4+5£
7 — 3%’

( oy A\)( L ) 0 # Ax infinitesimal

(3H + 4)(5K + 6}
{(H + 1) (1 - 4Ky’
(\/ /H? + 4 - H)H, H positive infinite

If f(x) = 1/\ﬂ, find fix + Ax) — f(x).

¢ infinitesimal

H, K positive infinite

1 9
(e + D{x +2)
Show that if a < b, then (a + b)/2 is between g and b; that is, a < (a + b)/2 < b.
Show that every open interval has infinitely many points.

What is the domain of the function f(x) =

The union of two sets X and Y, X u Y, is the set of all x such that x is either in X or
Y or both. Prove that the union of two bounded sets is bounded.

The intersection of X and Y. X n Y, is the set of all x such that x is in both X and ¥,
Prove that the intersection of two closed intervals is ither empty or is a closed interval.

Prove that the intersection of two open intervals is either empty or is an open interval,
Prove that two (real) straight lines with different slopes intersect.

Prove that if H is infinite, then 1/H is infinitesimal. .

Prove that if H is infinite and b is finite, then H + b is infinite.

Prove that if ¢ is positive infinitesimal, so is \'/E

Prove that if a, b are not infinitesimal and a ~ b, then 1/a = 1/b.

Prove that if a is finite, then st(|a]) = [st(a).

Suppose a is finite, » is real, and st(a) < r. Prove that a < r.

Suppose a and b are finite hyperreal numbers with st{a) < st(b). Prove thal there is a
real number r with @ < r < b,

Show that the set of real solutions of the equation f(x) = 0 is bounded if and only if
every hyperreal solution of f(x) = 0 is finitc.



