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EQl: X = (X/Y)*Y + MOD(X,Y) BY FUNCTION,DIVISION(X,Y);

EQZ: MOD(X,Y¥)>=0 BY FUNCTION,MOD(X,Y);

IEQO: X>=(X/Y)*Y BY ARITH,EQl.-,EQ2;

/# SET UP CONDITIONS FOR MONOTONICITY LEMMAS #

X/Y > 0 BY FUNCTION,DIVISION(X,Y);
(X/Y)*Y > 0 BY ARITH,X/Y>0,%,¥>0;
/# TERMINATION OF LOG #/
SOME D FIXED.(D>=0 & Y<=D) BY INTRO,Y;
SOME D FIXED.(D>=0 & X/Y<=D) BY INTRO,X/Y;
T1: LOG(B,X/¥) >= 0 BY FUNCIION,LOG(B,X/Y);
I2: LOG(B,Y) >= 0 BY FUNCTION.LOG(B,Yi; .
B,X/Y) + LOG(B,Y) >= 0 BY ARITH,Il,+,12;
ggTE E*iLéG(B.X/Y) > 0 BY ALLEL,EXP_POSITIVE,B,LOG(B,X/Y);
EZ2: B**LOG(B,¥) > 0 BY ALLEL,EXKP_POSITIVE,B,LOG(B,Y);
IEQl: B*%LOG(B,X/Y) <= X/Y BY FUNCTION,LOG(B.X/Y¥);
IEQ2: B#*LOG(B,Y) <= Y BY FUNCTION,LOG(B,Y):
IEQ3: B**(LOG(B,X/Y)+LOG(B,¥)) > 0
BY ALLEL,EXP_POSITIVE,B,(LOG(B,X/Y)+L0OG(B,Y))s
/# BECAUSE OF LOG PROPERTIES WE MUST RAISE LOG TO EXP #/

/# IN ORDER TO COMPARE ARGUMENTS. #/
EQ3: B#**LOG(B,X/Y)*B**LOG(B,Y) = Bx*(LOG(B,X/Y)+LOG(B,Y))
BY ALLEL,EXP_ADDITIVE,B,LOG(B,X/Y),LOG(B,Y); ¥

LTIPLY IEQL BY IEQ2 IN STAGES .
£T:NEE*E36(B.X/YJ*g**LOG(B.Y} <= (X/Y)*B**LOG(B,Y)
BY ARITH,IEQl.*,EZ2;
L2: (X/Y)*B#**LOG(B,Y) <= (X/Y)*Y BY ARITH,IEQ2,*.X/Y>0}
13: B**LOG(B,X/Y)*B**LOG(B,Y) <= (X/Y)*Y
BY ARITH,L1.L2:
B##%(LOG(B,X/Y) + LOG(B,Y)) <= (X/Y)*Y; /# SUBST IN EQ3 #/
/# NOW TAKE LOGARITHMS AND COMPARE #/
LOG(B,B#*(LOG(B,X/Y)+L0OG(B,Y)))<=L0OG(B, (X/¥)*Y)
BY ALLEL.LOG_MONOTONE,B,B**(LOG(B,X/Y)+LOG(B,¥)), (X/Y)*Y;
LOG(B,B**(LOG(B,X/Y)+L0G(B,Y))) = LOG(B,X/Y¥) + LOG(B,Y)
BY ALLEL,LOG_EXACT,B,LOG(B,X/Y)+LOG(B,Y)3
Fl: LOG(B,X/Y) + LOG(B,Y) <= ?OG(B.(X/Y)*Y);
: o (X/Y)*Y) <= LOG(B.X
£ ggaiiLéLf ioc_monowowE.B,(x/Y}*Y.xa /# FROM IEQO #/
CONCLUSION: LOG(B,X/¥) + LOG(B,Y) <= LOG(B,X)
BY ARITH,F1,F2;

QED;

*/

/% %kx% THIS IS THE FILE DIVIHY2 PLCV, ADVANCED DIVISION THEORY ik */

PRIME_FACTORIZATION: PROCEDURE(N,A,L,U,M /*: ,AA %/); o
DECLARE (A(%),M) FIXED; /* READWRITE PARAMETERS -
DECLARE (N,L,U) FIXED /+%/ READONLY */ ; o
/*: DECLARE (AA(#*)) FIXED READONLY; ¥
/* FACTOR AN INTEGER GREATER THAN 1 INTO A PRODUCT *5

/* OF PRIMES, PROD(A,L,M). THE PRIMES APPEAR IN NDNDECREASIN?C- o
/* ORDER, A(I)<=A(J) FOR I<=J., M IS THE COMPUTED NUMBER OF F. o
/* ORS WHILE U IS THE UPPER BOUND OF THE ARRAY A WHICH IS AN
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/* ESTIMATE OF THE NUMBER OF FACTORS. LOG TO THE BASE 2 OF N IS
/* THE ESTIMATE (CLEARLY AT LEAST THIS MANY IS REQUIRED FOR N A
/* POWER OF 2), THE NEED TO ESTIMATE THE NUMBER OF FACTORS IS
/* DUE TO PL/1'S REQUIREMENT ON ARRAY DECLARATIONS. THIS IS AN
/* ANNOYING FEATURE OF A PL/1 BASED THEORY WHICH WOULD NOT APPEAR
/* IN, SAY, A LISP BASED THEORY.
/*/ ASSUME
DOM(A.L) & DOM(A,U) & U-L >= LOG(2,N) & N > 1, AA = A:
/*/ ATTAIN
ATl: N = PROD(A,L,M) & L<=M<=U, DOM(A,M),
AT2: ALL I FIXED WHERE L<=I<=M.(PRIME(A(I)) & DIV(A(I),N) ),
AT3: ALL (I,J) FIXED WHERE L<=I<=J<=M. A(I)<=A(J),
AT4: ALL 1 FIXED WHERE LBOUND(A,1)<=I<L.AA(I)=A(I):
/*/ ARBITRARY D FIXED WHERE U-L < D:
DECLARE (P,N2) FIXED;
/*: DECLARE AAA(LBOUND(A,1): HBOUND(A,1)) FIXED:
/*: DECLARE AR(LBOUND(A,1):HBOUND(A,1)) FIXED:
/*/ SOME D FIXED.(D>=0 & N<=D) BY INTRO,N;
/*/ LOG(2,N)>=0 BY FUNCTION,LOG(2,N);
U-L>=0 BY ARITH,U-L>=L0G(2,N)>=03;
L<=U BY ARITH,U-L>=0,+,L=L;
A(U-L<0) BY ARITH,U-L>=L0G(2,N)>=0;
N*=0 BY ARITH,N>1:
/* FIND THE LEAST PRIME FACTOR OF N, CALL IT P
P = LEAST PRIME FACTOR(N);
/*/ P = LEAST PRIME FACTOR(N):
/*/ PRIME(P) & DIV(P,N) & ALL I FIXED WHERE 1<I<P.*DIV(I,N)
BY FUNCTION,LEAST PRIME_FACTOR(N);
/* DIVIDE OUT THE LEAST PRIME FACTOR AND MAKE IT THE FIRST
/* FACTOR OF THE PRODUCT, A(L). IF N IS COMPLETELY FACTORED
/* AS A RESULT, THEN STOP, OTHERWISE FACTOR N/P IN THE SAME WAY.
/*/ P"=0 BY ARITH,P>1;
/*/ MOD(N,P) = 0 BY ALLEL, DIV_MOD_EQUIVALENCE,N,P:
/*/ ATTAIN W/PA=1 & AA = A:
IF N/P = 1
THEN
DO;
/* N IS COMPLETELY FACTORED. ALL THE REQUIRED PROPERTIES
/* AT1,AT2,AT3, CAN BE PROVED TRIVIALLY FROM THE INFORMATION
/* THAT P IS PRIME, P DIVIDES N, N/P=1, A(L)=P AND M=L,
/* FOR THE ARRAY RULE SAVE A IN AR

/*: AR = A;

/*/ AR = A3 AR = AA;

M =L; ;

/*/ M = Ly A(L) = P; DOM(A,M); M<=L; M<=L<=U; DOM(A,M);

/# BY ARRAY ASSIGNMENT CONCLUDE:
ASGN1: ALL I FIXED WHERE IM=L.AR(I) = A(I):

SOME D FIXED.(D>=0 & N<=D) BY INTRO,N;

SOME D FIXED.(D>=0 & MONUS(M+1,L)<D) BY FUNCTION,
PROD_TERMINATION(A,L,M);

PROD(A,L,M) = A(L) BY FUNCTION,PROD(A,L,M);:

N = (N/P)*P + MOD(N,P) BY FUNCTION,DIVISION(N,P);
N 1#P + 03
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N=P= PROD(A,LoM) 5
M <= Uj
ALL 1 FIXED WHERE L<=I<=M.(PRIME(A(I))&DIV(A(I),N}) BY INTRO.
PROOF 3
1=1LBY ARTTH, L<=1<=M, 1=M3
A(L) = B3
QED;
ALL (1,J) FIXED WHERE L<=I1<=J<=M. A(1)<=A(J) BY INTRO,
PROOF 3

1 =1L BY ARITH.L<=I<=J<=M.L=M;
J=LBY ARlTH.L<=1<=J<=M,L=M;
A(1) <= A(J) BY ARITH,A(I)=A(J)3

ED3
%LL 1 FIXED WHERE LBOUND (A,1)<=1<Ls AA(L) =
PROOF 3
1A=1, BY ARITH,I<L3
AR(1) = A(I) BY ALLEL,ASGN1,13
AR(T) = AA(T)3 /# FROM AR = AA
QED3
*/
RETURN:

END3
/* W IS NOT COMPLETELY FACTORED, S0 FACTOR N/P IN THE SAME

/* WAY, BY CALLING PRIHE_EACTORIZATION. 1T MUST BE SHOWN

/* THAT THE INPUT CONDITIONS TO PRIME_FAGTORIZATION ARE MET

/* WE FIRST SHOW THAT THE ARRAY LENGTH 1S ADEQUATE TO CONTAIN
/% ALL THE FACTORS. WE sHOW THIS FIRST BECAUSE 1T 15 MOST IN-

/* TERESTING. THE PRO
/% AND 1S A PRIME CANDIDATE FOR AU

T

1

1 /+* ESSOR.

7 [*/

7 /4 CONDITIONS NEEDED TO USE LOG_OF_PROD
7 N>0; B>03

9 p<=N BY ALLEL.DIVISon_sIZE.E.N;

0 2513 0<P<=N;

12 103 LOG(2.N/B) + 1L0G(2.P) < LOG(2,M)
32 BY ALLEL.LOG_DF,PRDDUCT.Z.N,P;

33 L1: LOG(2.N/B) <= Loatz.n)-Loctz,P) BY ARITH,LO0s
3 p>=2 BY ARITH,P>13

SOME D FIXED.(D>=0 & p<=D) BY INTRO.P:

35
36 12: L0OG(2,P)>=1 BY ALLEL.LDGﬁEDSITIVE.Z.P;
37 13: LOG(Z.N)'LOG(z.P) <= 10G(2,8)-1

37 BY aRITu.LOG(z,ﬂ)=L0G(2.N).-,Loc(z.y) >= 13
4 ( LOG(2,H/P) <= 10G(2,0)-1 ) BY ARITH,L1,L33

38

39 U-(L+1)>=LOG(2,N)-1 BY ARIIH.U—L>=LOG(2,H),-.1=1;

140 U-(L+1)>=LOG(2.N/P) BY ARITH,

140 U-(L+1)>=LOG(2.N)-1>=LOG(2,N/P);

141 /4 SHOW THAT 1+1 BELONGS TO THE pOMAIN (THIS DEPENDS ON N )
141 N>=23

142 1# TERMINATION OF 1L0G(2,N)

142 GOME D FIXED.(D>=0 & N<=D) BY INTRO,N:

143 N>=0; N>=N:
LOG(E.N)>=1 BY ALLEL.LOG_PDSITIVE.Z.N;

A(L) BY INTRO,

oF OF THE DOMALN CONDITIONS 1S MOST BORING
TOMATION IN A THEORY OF suCC-

#/

*/
*/
*/
*/
*/
*/

*/
#/

—.LOG(Z,P)=LDG(2.P);

#
#
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0<U-L BY ARITH,U-L>=LOG(2,N)>=13
L<U BY ARITH,0<U-L,*+,L=L3
1+1<=HBOUND(A,1) BY ARITH,L+1<=U DOM(A.U) 3
/# L<Lt1 BY ARITH; DO WE’NEED TﬁIs (h03
LBOUND(A,1)<=L+1 BY ARITH,LBOUND A = :
Dom(A’L+1); » ( 21)% LoL<L+1l;
/# SHOW N/P IS GREATER THAN 1
E;;u BYIALLEL.DIVISOR_SIZE.P.N;
s= 1 BY ALLEL,DIVISION_LEMMA,N,P; /# NEED
N/P > 1 BY ARITH,N/P>=1,N/PA=1; Y THE LRI
/# SHOW U-(L+1)<D-1 FOR TERMINATION
" p-(L+l) < D-1 BY ARITH,U=L<D,~,1=13
/% USE AR TO NAME A BEFORE ASSIGNME =
iy NMENT A(L)=P
/*/ AR = A3 AR = AA;3
N2 = N/P; A(L) = B3

J%/ N2 = N/P; N2>1; U-(L+l)>= : = P3
/* BY ARRAY AéSIGéﬁEéét valgamly AL =5

/*/ ASGN2: ALL I FIXED WHERE 1M=L, AR(I)=A(1);
/% USE AAA TO KEEP TRACK OF THE AFFECT ’
/% OF PRIME_FACTORIZATION ON A.
[*: AAA = A3
i:i Zaifsrz ALL I FIXED . AAA(I) = A(I) BY INTRO3
AAA(L) = A(L) BY ALLEL,TRANSF,L}

AAA(L) = P;
/# RELATE AA TO AAA FOR PROOF OF AT4 BELOW
AA_AAA: ALL I FIXED WHERE TA=L,AA(T) = AAA(I
BY INTRO,PROOF; ) E
AR(I) = A(I) BY ALLEL,ASGN2,1;
AA(I) = AR(I):
QED;
LBOUND(A,1) LBOUND(AAA,1)3
HBOUND(A,1) = HBOUND(AAA,L);
— DOM(AAA,L+1); DOM(AAA,U) 3
PRIME_FACTORIZATION( (N2) »A,L+l (U) M /%2 z
/% LIST CONSEQUENCES LR e
/%l
Cl: N2 = PROD(A,L+1,M)3
gi: i;14=nx=ug L<=M; DOM(A,M);

: ALL I FIXED WHERE L+1<=I<=M.(PRIME(A(I)) & DIV(A(I),N2))3
Cch: ALL (I,J) FIXED WHERE Lil<=I<=J<=M., A(I)<=A(J)3 i
C53 £§L1§A§§§§R CONDITION ALLOWING PROOF THAT A(L) IS UNCHANGEL

D WHERE LBOUND(A 1)<=I<L+1.AAA(T)=A(L)}
LBOUND(A,1)<=L<L+1 } ’ o
AAA(L) = A(L) BY ALLEL,C5,L:

A(L) =(aaA(L) = P;

N = P*(N/P) + MOD(N,P) BY FUNCTION DIVISION(N.P):
N = A(L)*N2 + 03 N = A(L)*N23 ’ e
NO- A(L)*PROD (A, L+1,M) 3

SOME D FIXED.(D>=0 & MONUS(M+1,L)<D) BY FUNCTION
PROD_TERMINATION(A,L,M); i ) g

nn

nn

Pnon

#i

* *

o % OE N R N
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PROD(A,L,M) = A(L)*PROD(A,L+1,M) BY FUNCTION,PROD(A,L,M)3
*
1%/ /#/******* PROVE OUTPUT PROPERTIES ##iiiickiok
/# ALL OUTPUT PROPERTIES EXCEPT THE ORDER OF THE F ARE
/# EASY TO PROVE, FOR EXAMPLE,
SOME D FIXED.(D>=0 & MONUS(U+1,L)<D) BY FUNCTION,
PROD_TERMINATION(A,L,U);
PROD(A,L,U) = A(L)*PROD(A,L+1,U) BY FUNCTION, PROD(A,L,U) 3
M <= U;
/# WE NOW PROVE THAT THE FACTORS ARE ORDERED.
ALL (I,J) FIXED WHERE L<=I<=J<=M. A(I) <= A(J) BY INTRO,
PROOF 3
/# Foi ANY J IN L<=J<=M A(J) IS A PRIME FACTOR OF N, BUT
/# A(L) IS THE LEAST PRIME FACTOR, SO THE RESULT F FROM Ch.
Dl: L+#l<=I | I=L BY ARITH, L<=I;
A(1) <= A(J) BY CASES,Dl,
PROOF 3
CASE L+1<=I;
141<=I BY ARITH,L+1<=I,L<=I<=J<=M;
I<=M BY ARITH,L<=I<=J<=M;
A(I) <= A(J) BY ALLEL,C4,I1,J;
CASE I=L;
/# USE THE FACT THAT A(L) IS THE LEAST PRIME FACTOR.
D2: A(I) > A(J) | A(I) <= A(J) BY ARITH;
A(I) <= A(J) BY CASES,D2,
PROOF ;
CASE A(J) < A(I);
( I=J | 1=J ) BY ARITH;
1M=J BY CASES,(I=J | I*=J),
PROOF ;CASE I=J3;A(I)=A(J);'0"E BY ARITH,A(T)=A(J),A(J)<A(1); QED;
L+1<=J BY ARITH,L<=I<=J,I=J;
PRIME(A(J)) & DIV(A(J),N2) BY ALLEL,C3,J;
N = Px¥N2; N = N2%P;
DIV(A(J) ,N) BY ALLEL,DIVIDE_PRODUCT,A(J),N2,P;
1<A(J); 1<A(I)<A(I); A(I) = A(L) = P; 1<A(J)<P;
ADIV(A(J),N) BY ALLEL,ALL I FIXED WHERE 1<I<P.ADIV(I,.N),A(JI)3
10tB; /# A(J) BOTH DIVIDES AND DOES NOT DIVIDE N
QED; /# END OF CASES ON D2
QED; /# END OF CASES ON D1
QED: /# END OF INTRO
/# WOW ROUTINELY EXTEND THE DOMAIN OF C3.
ALL I FIXED WHERE L<=I<=M,( (PRIME(A(I)) & DIV(A(I),N)) ) BY INIRO,
PROOF 3
Dl: L#l<=I | L=I BY ARITH, L<=1;
PRIME(A(I)) & DIV(A(I),N) BY CASES,Dl,
PROOF ;
CASE Lt+l<=I;
L+1<=1<=M;
PRIME(A(I)) & DIV(A(I),N2) BY ALLEL,C3,I;
S T i ODUCT ,A(L) N2 ,P
DIV(A(I),N) BY ALLEL,DIVIDE_PR i »N2,P;
casé £=1: DIV(P,N); DIV(A(L),N); DIV(A(I),N); PRIME(A(I));
QED; /# END OF CASES ON D1

#/
#/

#/

#/
#/

#/

#/
#/

#/

#

1244 QED; /# END OF BOUNDED ALL INTRO %/
1245 /# FINALLY PROVE THE TRANSFER CONDITION, AT& #/
1245 /# BY RELATING A BEFORE A(L)=P AND CALL OF 2/
1245 /# PRIME_FACTORIZATION TO A AFTER. #/
1245 ALL I FIXED WHERE LBOUND(A,1)<=I<L.AA(I)=A(I)

1245 BY INTRO,PROOF;

1246 I<L+]l BY ARITH,I<L; I®=L BY ARITH,I<L}

1248 AMA(I) = A(I) BY ALLEL,C5,I:

1249 AAA(I) = AA(L) BY ALLEL,AA_AAA,TI;

1250

1250 QED; %/
1251 RETURN;

1252 END PRIME_FACTORIZATION;
*THEOREM

1253 /*/ FOR (N,F(*),L,U) FIXED DEFINE PRIME_FACTORS(N,F,L,U) =

1253 ALL I FIXED WHERE L<=I<=U,(PRIME(F(I)) & DIV(F(I),N) );

1254 FOR (F(*),L,U) FIXED DEFINE ORDERED(F,L,U) =

1254 ALL (I,J) FIXED WHERE L<=I<=J<=U. F(I)<=F(J);

1255 FOR (N,F(*),L,U) FIXED DEFINE FACTORIZATION(N,F,L,U) =

1255 N = PROD(F,L,U) & L<=U & PRIME_FACTORS(N,F,L,U) & ORDERED(F,L,U)3
1256

*PROCESS

1256 FTA_LEMMA: PROCEDURE(N,P,F,L,U) RETURNS(BIT(1));

1257 DECLARE (N,P,F(*),L,U) FIXED ;

1257 /* A LEMMA NEEDED TO SHOW THAT PRIME FACTORIZATION IS UNIQUE */
1258 /*/ ASSUME N > 1, PRIME(P), DIV(P,N),

1258 DOMAIN: DOM(F,L) & DOM(F,U),

1258 FACT: FACTORIZATION(N,F,L,U),

1258 LESS: ALL I FIXED WHERE L<=I<=U, P < F(I); */
1259 /*/ DEFINE FALSE = '0'B; */
1260 /*/ ATTAIN FALSE; */
1261 /* SHOW THAT SINCE P DIVIDES N AND IS PRIME, IT MUST DIVIDE */
1261 /* ONE OF THE F(I) ( A CONSEQUENCE OF PRIME_DIVIDES_LONG_PRODUCT*/
1261 /* SINCE F(I) IS ALSO PRIME, P MUST EQUAL F(I). BUT THIS IS */
1261 /* IMPOSSIBLE SINCE P<F(I). */
1261 /*/ [# %kkx%x BODY OF THE PROOF #iiww #/
1261 L<=U;

1262 DIV(P,PROD(F,L,U)); /# FROM FACTORIZATION AND DIV(P,N) #/ .
1263 ALL I FIXED WHERE L<=I<=U.F(I)>0 BY INTRO,

1263 PROOF 3

1264 L<=I<=U; /# DEFINITION OF DOM(F,I) AND DOMAIN ASSUME #/
1265 PRIME(F(I)) BY ALLEL,PRIME_FACTORS(N,F,L,U),I;

1266 F(I)>0 BY ARITH,F(I)>1; /# FROM DEF OF PRIME #/
1267 QED;

1268 DIV(P,PROD(F,L,0U))3

1269 STMT2(U-L)

1269 BY ALLEL,PRIME_DIVIDES_LONG_PRODUCT,U-L;

1270 /# POOR STYLE IN WRITING THE QUANTIFIERS IN #/
1270 /# PRIME_DIVIDES_LONG_PRODUCT RESULTS IN ALL #/
1270 /# THIS FUSS TO GET AT THE STATEMENT. #
1270 /# WE NEED TO BE CAREFUL ABOUT CAPTURING U-L #/
1270 /# SO WE RENAME THE BOUND VARIBLES OF STMT2(U-L) #/
1270 LA: ALL (A(*),LL,UU) FIXED WHERE LL<=UU & DOM(A,LL) &
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