
1

Cute Tricks with
Virtual Memory
Cute Tricks with
Virtual Memory

CS 614 9/7/06
by Ari Rabkin
CS 614 9/7/06
by Ari Rabkin

(and why they don’t work)(and why they don’t work)

A short history of VMA short history of VM

Memory used to be quite limited.

Use secondary storage to emulate.

Either by swapping out whole processes, or by
paging out individual pages.

Old technology -- done in the 60s.

Program is oblivious.

How paging worksHow paging works

Divide RAM into fixed size (4k?) pages.

Hardware typically has map from virtual
address to physical page. (Page table).

Each page table entry also has valid bits, mode
bits, etc.

Paging, continuedPaging, continued

Hardware translates each mem. operand from
virt. to phys. (Much too slow otherwise)

Uses a translation lookaside buffer (TLB) that’s
typically a fast associative cache.

Details of page tables, TLB vary from
architecture to arch.

4

Key questionsKey questions

How architecture-independent can an OS’s VM
system be?

What else can we do with VM?

VM hardware gives the OS complete
mediation of app memory access -- very
powerful!

Who gets to do it?

Flash forward...Flash forward...

Modern systems aren’t RAM constrained:
So what do we do with all the VM hardware?

Lot of possible uses explored, e.g., memory
mapping files. See Appel and Li for details.

Examples: Garbage collection, guard pages,
etc etc.

What is VM, fundamentally?

2

What is VM really?What is VM really?

Virtual memory isolates process memory

Separation is key tool for security

Can poke holes in interprocess barriers to
allow IO or interprocess communication.

Shared memory IPC, remapping to send
messages, etc.

The Mach VisionThe Mach Vision

Want to build the next generation Unix:

More portable, more flexible

Accent system showed you could use memory
mapping for fast IPC.

Why not move most of OS into user space, just
use kernel for (memory-based) IPC?

The mach visionThe mach vision

IPC via messages sent through ports to
threads

Fork needs to be cheap, so want to use copy-
on-write extensively

Push paging into userspace, for flexibility.

Also, want to reduce size, cost of pagetables

mach VM systemmach VM system

Want to minimize arch. dependence, and keep
tables small.

But page tables are architecture-specific.

Solution: keep machine indep. data structures,
machine-dep. structures are purely a cache.

Authoritative copy is maintained by machine-
independent parts of Mach.

Handling forksHandling forks

Unix typically uses lots of small processes,
created via fork. Want to make this fast.

Typically, every process needs its own page
table.

Page tables are expensive and bulky; how to
reduce overhead?

StructuresStructures

A few key data structures

Per-process Address maps to define regions
(small!)

Machine-independent (inverted) page table
(one per system)

Memory objects to hold actual backing store

3

Mach’s interfaceMach’s interface
Exposes powerful low-level interface.

LessonsLessons

Really is possible to build a largely machine-
independent VM system.

Radically improves portability.

Very flexible: pagers can live in user space

Can even make it fairly fast!

How can this be fast?How can this be fast?
Often, arch’s page tables aren’t quite right for
the OS.

Better to use machine-indep format that’s really
right, and then can be flexible in how arch.
pages tables are used.

Who designs better data structures:
Programmers or chip designers?

But is it really fast?But is it really fast?

If Mach is so fast, how come nobody uses it?

VM system isn’t the whole OS: messaging
hurts a lot.

Security checks on messages are expensive:
most of the expense of IPC is the check. (See
the L3/L4 papers for how to make IPC fast)

Mach didn’t make it fast. Too much overhead
on the critical path.

Hardware changesHardware changes
Hardware has changed since Mach

CPUs getting faster, faster than RAM. Caching
critical.

Bigger (more important) caches

Microkernels don’t play nice here: dump
cache on the [frequent] context switches.

See Chen and Bershad 93

L4 syscall results L4 syscall results

Conclusion: Cost of syscall is from Mach, not
microkernels generally.

4

The End of The µ-KernelsThe End of The µ-Kernels

Linus Torvalds: “Essentially, trying to make
microkernels portable is a waste of time. It's
like building an exceptionally fast car and
putting square tires on it. The idea of
abstracting away the one thing that must be
blindingly fast--the kernel--is inherently
counter-productive.”
[http://www.oreilly.com/catalog/opensources/book/linus.html]

Why Asbestos?Why Asbestos?

Servers typically touch data for many users.

Bugs may allow user A to read data from part
of server talking to user B.

Want to have outside enforcement of isolation
of different user’s data.

Normal processes too heavyweight; need
something lighter.

What is Asbestos?What is Asbestos?

Research OS, designed to have data flow
labels

Strong compartmentalization to limit damage
from user-level compromises.

Fires don’t spread

Key question: how much does it all cost?

Event ProcessesEvent Processes

Idea: have event processes where different
instances share most of address space, but not
everything.

Just a few pages separate--for user-specific
data.

OS alters pagetables for just those pages on
context switch

What does it cost?What does it cost?

Not so cheap.

Competitive with comparatively few cached
events.

Note: cached events are essentially expired.

But much better security

Asbestos ThroughputAsbestos Throughput

5

Asbestos LatencyAsbestos Latency Lessons from AsbestosLessons from Asbestos

Can use VM to protect data in fine-grained
way. Performance is respectable, particularly
for an unoptimized system.

Sometimes high protection is more important
than throughput

Need to organize apps to keep protected data
contiguous and on heap. Otherwise is costly.

