
1

Application-Level Multicast

Routing

Michael Siegenthaler

CS 614 – Cornell University

November 2, 2006

A few slides are borrowed from Swati Agarwal, CS 614, Fall 2005.

What Is Multicast?

• Unicast

– One-to-one

– Destination – unique
receiver host address

• Broadcast

– One-to-all

– Destination – address of
network

• Multicast

– One-to-many

– Multicast group must be
identified

– Destination – address of
group

Key:

Unicast transfer

Broadcast transfer

Multicast transfer

Few slides are based on slides originally developed by (1) L. Armstrong, Univ of Delaware, (2) Rao - www.ibr.cs.tu-

bs.de/events/netgames2002/presentations/rao.pdf

Some Applications…

• Streaming broadcast media
– Radio

– Television

• Live events involving multiple parties
– Video conferencing

– Distance learning

• Content distribution
– Software

– Movies

• All of these involve one-to-many communication

Why Multicast?

• Traditional mechanisms for one-to-one
communication do not scale

– Overloading a single source

– Network links carry the same traffic separately for
each receiver

• Multicasting solves both problems. In the ideal
case:

– Source only needs to transmit one or a few copies of
the data

– Each link only caries one copy of the data

Network-Level (IP) Multicast

Berkeley

Cornell

Davis

MIT

Routers with multicast support

• Reserved a portion of the address space

• Route packets to the group identified by the class D
destination IP address

• “You put packets in at one end, and the network
conspires to deliver them to anyone who asks.” – David
Clark

Problems with IP Multicast

• Deployment is difficult

– Requires support from routers

• Scalability

– Routers maintain per-group state

• Difficult to support higher level functionality

– Reliability, congestion control

• Billing issues

• As a result, barely anybody uses it

2

Application layer multicast
Davis

MIT

Dav1

Dav2

Berk2

Overlay Tree

Cornell

Berk1

Berkeley

Cornell Dav1

Dav2

Berk1

Berk2

MIT

Benefits

• Scalability
– Routers do not maintain per group state

• Easy to deploy
– No change to network infrastructure

– Just another application

• Simplifies support for higher level
functionality
– Can utilize existing solutions for unicast

congestion control

Application-Level Multicast

• Two basic architectures are possible

– Proxy-based

• Dedicated server nodes exchange content among
themselves

• End clients download from one of the servers and
do not share their data

– Peer to peer

• All participating nodes share the load

• “End clients” also act as servers and relay data to
other nodes

A few concerns…

• Performance penalty
– Redundant traffic on physical links

• stress = number of times a semantically identical packet traverses a
given link

– Increase in latency

• stretch = ratio of latency in an overlay network compared to a
baseline such as unicast or IP multicast

• Constructing efficient overlays
– Application needs differ

• Adapting to changes
– Network dynamics

– Group membership – members can join and leave

– Both of these contribute to churn

Overcast

• Single source multicast
• Proxy-based architecture

– Assumes nodes are well-provisioned

• Reliable delivery
– Software or video distribution
– Buffered streaming media

• “Live” could mean delayed by seconds or minutes

• Long term storage at each node
• Easily deployable, seeks to minimize human

intervention

• Works in the presence of NATs and firewalls

Components

• Root : central source (may be replicated)

• Node : internal overcast nodes with

permanent storage

– Organized into distribution tree

• Client : final consumers (HTTP clients)

R

Root Node Client

3

Bandwidth Efficient Overlay Trees

10 Mb/s

10
0

M
b/

s

100 M
b/s

R

1

2

R

1

2

R 1 2 R 12

“…three ways of organizing the root and the nodes into a distribution tree.”

Self-Organizing Algorithm

• A new server initially joins at the root
• Iteratively moves farther down the tree

– Relocate under a sibling if doing so does not sacrifice
bandwidth back to the root

– This results in a deep tree with high bandwidth to
every node

• A node periodically reevaluates its position
– May relocate under a sibling
– May become a sibling of its parent

• Fault tolerant
– If parent fails, relocate under grandparent

Self-Organizing Algorithm

R

1

10

2

20

R

1 2

Overcast network tree
Round 1

15

R

2

1

Overcast network tree
Round 2

Connecting Clients

• Client contacts the root via an HTTP
request
– Allows unmodified clients to connect

– URLs provide flexible addressing
• Hostname identifies the root

• Pathname identifies the multicast group

• Root redirects the client to a node which is
geographically close to the client
– Root must be aware of all nodes

Client joins

R1

1

2

3

4

5

6

R2 R3

Key:

Content query
(multicast join)

Query redirect

Content delivery

State Tracking – the Up/Down
protocol

• Each node maintains
state about all nodes in

its subtree

– Reports the “births” and
“deaths” among its
children

– Information is aggregated
on its way up the tree

• Each child periodically
checks in with its parent

– Support NATs/firewalls

1

1.1 1.2 1.3

1.2.1 1.2.31.2.2

1.2.2.1

Birth
certificates
for 1.2.2,
1.2.2.1

No change
observed.

Propagation
halted.

4

Is The Root Node A Single
Point Of Failure?

• Root is responsible for handling all join requests
from clients
– Note: root does not deliver content

• Root’s Up/Down protocol functionality can not be
easily distributed
– Root maintains state for all Overcast nodes

• Solution: configure a set of nodes linearly from
root before splitting into multiple branches
– Each node in the linear chain has sufficient

information to assume root responsibilities

– Natural side effect of Up/Down protocol

Evaluation

Evaluation

Lease period = how long a parent will wait to hear from a child before

reporting its death

Evaluation

Overcast Conclusion

• Designed for software, video distribution

– Bit-for-bit integrity, not time critical

• Could fullfill a similar role as content

distributions systems such as Akamai

• Also works for “live” streams, if sufficient
buffering delay is used

Enabling Conferencing Applications
on the Internet using an Overlay

Multicast Architecture

• Latency and bandwidth are important

– Real-time interaction between users

• Evaluates how to optimize for dual metrics

• Small-scale (10s of nodes) peer to peer

architecture

– Single source at any given time

• Gracefully degradable

– Better to give up on lost packets than to retransmit
and have them arrive too late to be useful

5

Self-Improving Algorithm

• Two-step tree building process (Narada)
– Construct a mesh, a rich connected graph

– Choose links from the mesh using well-known
routing algorithms

• Routing chooses shortest widest path
– Picks highest bandwidth, and opts for lowest

latency when there are multiple choices

– Exponential smoothing and discrete
bandwidth levels are used to deal with
instability due to dynamic metrics

Evaluation

• Schemes for constructing overlays

– Sequential Unicast

• Hypothetical construct for comparisons purposes

– Random

• Baseline to compare against

– Latency-Only

– Bandwidth-Only

– Bandwidth-Latency

Evaluation Comparison of schemes

• Primary Set – 1.2 Mbps

• Primary Set – 2.4 Mbps

• Extended Set – 2.4 Mbps

• Primary Set contains well connected nodes

– North American university sites

• Extended Set – more heterogeneous
environment

– Some ADSL links, hosts in Europe and Asia

Bandwidth – primary set, 1.2 Mbps Bandwidth – extended set, 2.4 Mbps

6

RTT – extended set, 2.4 Mbps Conclusion

• It is possible to build overlays that optimize

for both bandwidth and latency

• Unclear whether these results scale to

larger group sizes

More Recent Work

• SplitStream

– Uses multiple overlapping trees

• Various DHT-based approaches

• BitTorrent

– Unstructured, random graphs

Discussion Questions

• Is a structured overlay the right approach,

or is something more random better?

– How much do we really care about stress or
stretch?

• Both papers mainly use heuristics

– Could a more mathematically based approach
do better?

