Consensus, impossibility results and Paxos

Ken Birman
Consensus... a classic problem

- Consensus abstraction underlies many distributed systems and protocols
 - N processes
 - They start execution with inputs $\in \{0,1\}$
 - Asynchronous, reliable network
 - At most 1 process fails by halting (crash)
 - Goal: protocol whereby all “decide” same value v, and v was an input
Jenkins, if I want another yes-man, I’ll build one!
Asynchronous networks

- No common clocks or shared notion of time (local ideas of time are fine, but different processes may have very different “clocks”)
- No way to know how long a message will take to get from A to B
- Messages are never lost in the network
Quick comparison...

<table>
<thead>
<tr>
<th>Asynchronous model</th>
<th>Real world</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliable message passing, unbounded delays</td>
<td>Just resend until acknowledged; often have a delay model</td>
</tr>
<tr>
<td>No partitioning faults ("wait until over")</td>
<td>May have to operate "during" partitioning</td>
</tr>
<tr>
<td>No clocks of any kinds</td>
<td>Clocks but limited sync</td>
</tr>
<tr>
<td>Crash failures, can’t detect reliably</td>
<td>Usually detect failures with timeout</td>
</tr>
</tbody>
</table>
Fault-tolerant protocol

- Collect votes from all N processes
 - At most one is faulty, so if one doesn’t respond, count that vote as 0
- Compute majority
- Tell everyone the outcome
- They “decide” (they accept outcome)
- ... but this has a problem! Why?
What makes consensus hard?

- Fundamentally, the issue revolves around membership
 - In an asynchronous environment, we can’t detect failures reliably
 - A faulty process stops sending messages but a “slow” message might confuse us
- Yet when the vote is nearly a tie, this confusing situation really matters
Fischer, Lynch and Patterson

- A surprising result
 - Impossibility of Asynchronous Distributed Consensus with a Single Faulty Process
- They prove that no asynchronous algorithm for agreeing on a one-bit value can guarantee that it will terminate in the presence of crash faults
 - And this is true even if no crash actually occurs!
 - Proof constructs infinite non-terminating runs
Core of FLP result

- They start by looking at a system with inputs that are all the same
 - All 0’s must decide 0, all 1’s decides 1
- Now they explore mixtures of inputs and find some initial set of inputs with an uncertain (“bivalent”) outcome
- They focus on this bivalent state
Bivalent state

System starts in S_*

- Events can take it to state S_0
 - Sooner or later all executions decide 0

- Events can take it to state S_1
 - Sooner or later all executions decide 1

S_* denotes bivalent state
S_0 denotes a decision 0 state
S_1 denotes a decision 1 state
Bivalent state

e is a critical event that takes us from a bivalent to a univalent state: eventually we’ll “decide” 0

Events can take it to state S_0

System starts in S_*

Events can take it to state S_1
Bivalent state

They delay e and show that there is a situation in which the system will return to a bivalent state.

System starts in S_*

Events can take it to state S_1
Bivalent state

System starts in S_*

Events can take it to state S_1

In this new state they show that we can deliver e and that now, the new state will still be bivalent!
Bivalent state

System starts in S_*

Events can take it to state S_1

Notice that we made the system do some work and yet it ended up back in an “uncertain” state. We can do this again and again.
Core of FLP result in words

- In an initially bivalent state, they look at some execution that would lead to a decision state, say “0”
 - At some step this run switches from bivalent to univalent, when some process receives some message m
 - They now explore executions in which m is delayed
Core of FLP result

- So:
 - Initially in a bivalent state
 - Delivery of m would make us univalent but we delay m
 - They show that if the protocol is fault-tolerant there must be a run that leads to the other univalent state
 - And they show that you can deliver m in this run without a decision being made
- This proves the result: they show that a bivalent system can be forced to do some work and yet remain in a bivalent state.
 - If this is true once, it is true as often as we like
 - In effect: we can delay decisions indefinitely
Intuition behind this result?

- Think of a real system trying to agree on something in which process p plays a key role.
- But the system is fault-tolerant: if p crashes it adapts and moves on.
- Their proof “tricks” the system into treating p as if it had failed, but then lets p resume execution and “rejoin”.
- This takes time... and no real progress occurs.
But what did “impossibility” mean?

- In formal proofs, an algorithm is totally correct if
 - It computes the right thing
 - And it always terminates
- When we say something is possible, we mean “there is a totally correct algorithm” solving the problem
- FLP proves that any fault-tolerant algorithm solving consensus has runs that never terminate
 - These runs are extremely unlikely (“probability zero”)
 - Yet they imply that we can’t find a totally correct solution
 - And so “consensus is impossible” (“not always possible”)
Solving consensus

- Systems that “solve” consensus often use a membership service
 - This GMS functions as an oracle, a trusted status reporting function
- Then consensus protocol involves a kind of 2-phase protocol that runs over the output of the GMS
- It is known precisely when such a solution will be able to make progress
GMS in a large system

- **Global events** are inputs to the GMS.
- **Output is the official record of events that mattered to the system.**
Paxos Algorithm

- Distributed consensus algorithm
 - Doesn’t use a GMS... at least in basic version... but isn’t very efficient either
- Guarantees safety, but not liveness.
- Key Assumptions:
 - Set of processes that run Paxos is known a-priori
 - Processes suffer crash failures
 - All processes have Greek names (but translate as “Fred”, “Cynthia”, “Nancy”...)
Paxos “proposal”

- Node proposes to append some information to a replicated history.
- Proposal could be a decision value, hence can solve consensus.
- Or could be some other information, such as “Frank’s new salary” or “Position of Air France flight 21.”
Paxos Algorithm

- Proposals are associated with a version number.
- Processors vote on each proposal. A proposal approved by a majority will get passed.
 - Size of majority is “well known” because potential membership of system was known a-priori
 - A process considering two proposals approves the one with the larger version number.
Paxos Algorithm

- 3 roles
 - proposer
 - acceptor
 - Learner

- 2 phases
 - Phase 1: prepare request \(\longleftrightarrow\) Response
 - Phase 2: Accept request \(\longleftrightarrow\) Response
Phase 1: (prepare request)

(1) A proposer chooses a new proposal version number n, and sends a prepare request ("prepare",n) to a majority of acceptors:

(a) Can I make a proposal with number n?
(b) if yes, do you suggest some value for my proposal?
Phase 1: (prepare request)

(2) If an acceptor receives a prepare request ("prepare", n) with n greater than that of any prepare request it has already responded, sends out ("ack", n, n', v') or ("ack", n, ⊥, ⊥)

(a) responds with a promises not to accept any more proposals numbered less than n.
(b) suggest the value v of the highest-number proposal that it has accepted if any, else ⊥
Phase 2: (accept request)

(3) If the proposer receives responses from a majority of the acceptors, then it can issue a accept request (“accept”, n, v) with number n and value v:

(a) n is the number that appears in the prepare request.

(b) v is the value of the highest-numbered proposal among the responses.
Phase 2: (accept request)

(4) If the acceptor receives an accept request ("accept", n, v), it accepts the proposal unless it has already responded to a prepare request having a number greater than n.
Learning the decision

- Whenever acceptor accepts a proposal, respond to all learners (“accept”, n, v).
- Learner receives (“accept”, n, v) from a majority of acceptors, decides v, and sends (“decide”, v) to all other learners.
- Learners receive (“decide”, v), decide v
In Well-Behaved Runs

1: proposer
1-n: acceptors
1-n: acceptors

1
2
n

1
2
n

1
2
n

1

(“prepare”, 1)
(“accept”, 1, \(v_1\))
(“ack”, 1, \(\perp, \perp\))

\[\text{decide } v_1\]
Paxos is safe...

- Intuition:
 - If a proposal with value \(v \) is decided, then every higher-numbered proposal issued by any proposer has value \(v \).

A majority of acceptors accept \((n, v)\), \(v \) is decided

next prepare request with Proposal Number \(n+1 \)

(what if \(n+k \)?)
Safety (proof)

- Suppose \((n, v)\) is the earliest proposal that passed. If none, safety holds.
- Let \((n', v')\) be the earliest issued proposal after \((n, v)\) with a different value \(v'! = v\)
- As \((n', v')\) passed, it requires a major of acceptors. Thus, some process approve both \((n, v)\) and \((n', v')\), though it will suggest value \(v\) with version number \(k >= n\).
- As \((n', v')\) passed, it must receive a response ("ack", \(n', j, v'\)) to its prepare request, with \(n < j < n'\). Consider \((j, v')\) we get the contradiction.
Liveness

- Per FLP, cannot guarantee liveness

- Paper gives us a scenario with 2 proposers, and during the scenario no decision can be made.
Liveness (cont.)

- Omissions cause the Liveness problem.
 - Partitioning failures would look like omissions in Paxos
 - Repeated omissions can delay decisions indefinitely (a scenario like the FLP one)

- But Paxos doesn’t block in case of a lost message
 - Phase I can start with new rank even if previous attempts never ended
As the paper points out, selecting a distinguished proposer will solve the problem.

“Leader election”

This is how the view management protocol of virtual synchrony systems works... GMS view management “implements” Paxos with leader election.

Protocol becomes a 2-phase commit with a 3-phase commit when leader fails
A small puzzle

- How does Paxos scale?
 - Assume that as we add nodes, each node behaves iid to the other nodes
 - ... hence likelihood of concurrent proposals will rise as $O(n)$

- Core Paxos: 3 linear phases... but expected number of rounds will rise too... get $O(n^2)$... $O(n^3)$ with failures...
Summary

- Consensus is “impossible”
 - But this doesn’t turn out to be a big obstacle
 - We can achieve consensus with probability one in many situations
- Paxos is an example of a consensus protocol, very simple
- We’ll look at other examples Thursday