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General themes

• CPU, network bandwidth increasing rapidly
• Main memory, IPC unable to keep up

– trend towards microkernels increase number of
IPC transactions

One remedy is to increase speed/bandwidth of
IPC data (data moving between processes)



fbufs

• Attempts to increase bandwidth within
network subsystem

• In a nutshell: provides immutable buffers
shared among processes of subsystem

• Implemented using shared memory and
page remapping in a specialized OS: the x-
kernel



fbuf, details
• Incoming “packet data units” passed to

higher protocols in fbufs
• PDUs are assembled into “application data

units” by use of an aggregation ADT



fbufs, details

• fbuf interface does not support writes after
producer fills buffer (PDU)
– fbufs can be reused after consumer is finished;

leads to sequential use of fbufs
– applications shouldn’t have to modify data

anyway



fbufs, details

• fbuf interface does not support writes after
producer fills buffer (PDU)
– fbufs can be reused after consumer is finished;

leads to sequential use of fbufs
– applications shouldn’t have to modify data

anyway
– LIMITATION, especially in a more general

system



Enter IO-Lite

• Take fbufs, but make them
– more general, accessible to the filesystem in

addition to the network subsystem
– more versatile, usable on standard OSes (not

just x-kernel)
• Solves a more general problem: rapidly

increasing CPUs (not just network
bandwidth)



Before comparing them to fbufs...

• Problems in the “old way” of doing things
– redundant data copying
– redundant copies of data lying around
– no special optimizations between subsystems



IO-Lite at a high level

• IO-Lite must provide system-wide buffers
to prevent multiple copies
– UNIX allocates filesystem buffer cache from

different pool of kernel memory than, say,
network buffers and application-level buffers
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Access Control Lists

• Processes must be granted permission to
view buffers
– each buffer pool has an ACL for this purpose
– for each buffer space, list of processes granted

permission to access it



Consequence of ACLs

• Producer must know data path to consumer
– gets slightly tricky with incoming network

packets
– must use early demultiplexing (mentioned as a

common enough technique)
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Pipelining

• Abstractly represents good modularity
• Conceptually data moves through pipeline

from producer to consumer
• IO-Lite comes close to implementing this in

practice
– when the path is known ahead of time, context

switches are the biggest overheads in pipeline



immutable --> mutable

• Data in an OS must be manipulated in
various ways
– network protocols (same as fbufs)
– modifying cached files (i. e., to send to various

clients via a network/writing checksums)
• IO-Lite must support concurrent buffer use

among sharing processes



immutable --> mutable

fbufs

IO-Lite
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Consequences of mutable bufs

• Whole buffers are rewritten
– same as if there was no IO-Lite -- same penalty as a

data copy
• Bits and pieces of files are rewritten

– what this system was designed for -- ADT handles
modified sections nicely

• Too many bits and pieces are rewritten
– IO-Lite uses mmap to make it contiguous -- usually

results in a kernel memory copy



Evicting I/O pages

• LRU policy on unreferenced bufs (if one exists)
• Otherwise, LRU on referenced bufs

– since bufs can have multiple references, might require
multiple write-backs to disk

• Tradeoff between size of I/O cache and size of
VM pages
– greater than 50% replaced pages are IO-Lite, evict one

to reduce the number



The bad news

• Applications must be modified to use
special IO-Lite read/write calls

• Both applications at either end of a UNIX
pipe must use library to gain benefits of IO-
Lite’s IPC



The good news

• Many applications can take further
advantage of IPC
– computing packet checksums only once



The good news

• Many applications can take further
advantage of IPC
– computing packet checksums only once

<generation #, addr> --> I/O buf data



Flash-Lite

• Flash web server modified to use IO-Lite
• HTTP

– up to 43% faster than Flash
– up to 137% faster than Apache

• Persistent HTTP (less TCP overhead)
– up to 90% network saturation

• Dynamic pages have advantage because of
IPC between server and CGI program



HTTP/PHTTP



PHTTP with CGI



Something else fbufs can’t do

• Non-network applications
• Fewer memory copies across IPC



On to prefetching/caching…

• Once again, CPU speeds far exceed main
memory speeds

• Tradeoff
– prefetch too early --> less cache space
– cache too long --> less room for prefetching

• Try to strike a balance



Let’s focus on the TLB

• Microkernel modularity pays a price: more
TLB misses

• Solution in software -- no hardware mods
• Handles only kernel misses -- 50% of total
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Prefetching

• Prefetch on IPC path
– concurrency in separate domains increases

misses
– fetch L2 mappings to process stack, code, and

data segments
• Generic trap handles misses first time,

caches them in flat PTLB for future hash
lookups



Caching

• Goal: avoid cascaded misses in page table
– entries evicted from TLB are cached in STLB
– adds 4-cycle overhead to most misses in general trap

handler
• When using STLB, don’t prefetch L3

– usually evicts useful cached entries
• In fact, using both caching + prefetching only

improves performance if have a lot of IPCs, such
as in servers



Performance -- PTLB



Performance -- overall



Performance -- overall

BUT NO OVERALL GRAPH GIVEN
FOR NUMBER OF PENALTIES



Amdahl’s Law in action

• Overall performance only marginally better



Summary

• Bridging the gap between memory speeds
and CPU is worthwhile

• Microkernels have fallen out of favor
– but could come back
– relatively slow memory is still a problem

• Sharing resources between processes
without placing too many restrictions on the
data is a good approach


