
VM and I/O

IO-Lite: A Unified I/O Buffering
and Caching System

Vivek S. Pai, Peter Druschel, Willy Zwaenepoel

Software Prefetching and Caching for TLBs
Kavita Bala, M. Frans Kaashoek, William E. Weihl



General themes

• CPU, network bandwidth increasing rapidly
• Main memory, IPC unable to keep up

– trend towards microkernels increase number of
IPC transactions



General themes

• CPU, network bandwidth increasing rapidly
• Main memory, IPC unable to keep up

– trend towards microkernels increase number of
IPC transactions

One remedy is to increase speed/bandwidth of
IPC data (data moving between processes)



fbufs

• Attempts to increase bandwidth within
network subsystem

• In a nutshell: provides immutable buffers
shared among processes of subsystem

• Implemented using shared memory and
page remapping in a specialized OS: the x-
kernel



fbuf, details
• Incoming “packet data units” passed to

higher protocols in fbufs
• PDUs are assembled into “application data

units” by use of an aggregation ADT



fbufs, details

• fbuf interface does not support writes after
producer fills buffer (PDU)
– fbufs can be reused after consumer is finished;

leads to sequential use of fbufs
– applications shouldn’t have to modify data

anyway



fbufs, details

• fbuf interface does not support writes after
producer fills buffer (PDU)
– fbufs can be reused after consumer is finished;

leads to sequential use of fbufs
– applications shouldn’t have to modify data

anyway
– LIMITATION, especially in a more general

system



Enter IO-Lite

• Take fbufs, but make them
– more general, accessible to the filesystem in

addition to the network subsystem
– more versatile, usable on standard OSes (not

just x-kernel)
• Solves a more general problem: rapidly

increasing CPUs (not just network
bandwidth)



Before comparing them to fbufs...

• Problems in the “old way” of doing things
– redundant data copying
– redundant copies of data lying around
– no special optimizations between subsystems



IO-Lite at a high level

• IO-Lite must provide system-wide buffers
to prevent multiple copies
– UNIX allocates filesystem buffer cache from

different pool of kernel memory than, say,
network buffers and application-level buffers



file
system

web
server

CGI

TCP/IP



file
system

web
server

CGI

TCP/IP



file
system

web
server

CGI

TCP/IP



file
system

web
server

CGI

TCP/IP



file
system

web
server

CGI

TCP/IP

A

A

A



file
system

web
server

CGI

TCP/IP

A

A

A



file
system

web
server

CGI

TCP/IP

A

A

A



Access Control Lists

• Processes must be granted permission to
view buffers
– each buffer pool has an ACL for this purpose
– for each buffer space, list of processes granted

permission to access it



Consequence of ACLs

• Producer must know data path to consumer
– gets slightly tricky with incoming network

packets
– must use early demultiplexing (mentioned as a

common enough technique)



file
system

web
server

CGI

TCP/IP

A

A

A



file
system

web
server

CGI

TCP/IP

A

A

A

P1

P2

P3

P4



file
system

web
server

CGI

TCP/IP

A

A

A

P1

P2

P3

P4

1 2 3

ACLs:

Buffers:

P1, P2 P1, P3, P4 P4



file
system

web
server

CGI

TCP/IP

A

A

A

P1

P2

P3

P4

1 2 3

ACLs:

Buffers:

P1, P2 P1, P3, P4 P4



Pipelining

• Abstractly represents good modularity
• Conceptually data moves through pipeline

from producer to consumer
• IO-Lite comes close to implementing this in

practice
– when the path is known ahead of time, context

switches are the biggest overheads in pipeline



immutable --> mutable

• Data in an OS must be manipulated in
various ways
– network protocols (same as fbufs)
– modifying cached files (i. e., to send to various

clients via a network/writing checksums)
• IO-Lite must support concurrent buffer use

among sharing processes



immutable --> mutable

fbufs

IO-Lite



immutable --> mutable

File Cache

Buffer 1

Buffer
Aggregate
(in user
process)



immutable --> mutable

File Cache

Buffer 1

Buffer
Aggregate
(in user
process)



immutable --> mutable

File Cache

Buffer 1

Buffer
Aggregate
(in user
process)

Buffer 2



Consequences of mutable bufs

• Whole buffers are rewritten
– same as if there was no IO-Lite -- same penalty as a

data copy
• Bits and pieces of files are rewritten

– what this system was designed for -- ADT handles
modified sections nicely

• Too many bits and pieces are rewritten
– IO-Lite uses mmap to make it contiguous -- usually

results in a kernel memory copy



Evicting I/O pages

• LRU policy on unreferenced bufs (if one exists)
• Otherwise, LRU on referenced bufs

– since bufs can have multiple references, might require
multiple write-backs to disk

• Tradeoff between size of I/O cache and size of
VM pages
– greater than 50% replaced pages are IO-Lite, evict one

to reduce the number



The bad news

• Applications must be modified to use
special IO-Lite read/write calls

• Both applications at either end of a UNIX
pipe must use library to gain benefits of IO-
Lite’s IPC



The good news

• Many applications can take further
advantage of IPC
– computing packet checksums only once



The good news

• Many applications can take further
advantage of IPC
– computing packet checksums only once

<generation #, addr> --> I/O buf data



Flash-Lite

• Flash web server modified to use IO-Lite
• HTTP

– up to 43% faster than Flash
– up to 137% faster than Apache

• Persistent HTTP (less TCP overhead)
– up to 90% network saturation

• Dynamic pages have advantage because of
IPC between server and CGI program



HTTP/PHTTP



PHTTP with CGI



Something else fbufs can’t do

• Non-network applications
• Fewer memory copies across IPC



On to prefetching/caching…

• Once again, CPU speeds far exceed main
memory speeds

• Tradeoff
– prefetch too early --> less cache space
– cache too long --> less room for prefetching

• Try to strike a balance



Let’s focus on the TLB

• Microkernel modularity pays a price: more
TLB misses

• Solution in software -- no hardware mods
• Handles only kernel misses -- 50% of total





user
addr
space



user
addr
space

kernel
data
structs



user
addr
space

kernel
data
structs

user
page
tables



user
addr
space

kernel
data
structs

user
page
tables

next
level of
page tables



user
addr
space

kernel
data
structs

user
page
tables

next
level of
page tables



Prefetching

• Prefetch on IPC path
– concurrency in separate domains increases

misses
– fetch L2 mappings to process stack, code, and

data segments
• Generic trap handles misses first time,

caches them in flat PTLB for future hash
lookups



Caching

• Goal: avoid cascaded misses in page table
– entries evicted from TLB are cached in STLB
– adds 4-cycle overhead to most misses in general trap

handler
• When using STLB, don’t prefetch L3

– usually evicts useful cached entries
• In fact, using both caching + prefetching only

improves performance if have a lot of IPCs, such
as in servers



Performance -- PTLB



Performance -- overall



Performance -- overall

BUT NO OVERALL GRAPH GIVEN
FOR NUMBER OF PENALTIES



Amdahl’s Law in action

• Overall performance only marginally better



Summary

• Bridging the gap between memory speeds
and CPU is worthwhile

• Microkernels have fallen out of favor
– but could come back
– relatively slow memory is still a problem

• Sharing resources between processes
without placing too many restrictions on the
data is a good approach


