
Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

Time

Michael George

November 10, 2005

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

The Problem

“All we do here is invent games to pass the time.”
— John O’Donohue

Given a collection of processes that can. . .

Only communicate with significant latency

Only measure time intervals approximately

Fail in various ways

. . . we want to construct a shared notion of time.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

The Problem

“All we do here is invent games to pass the time.”
— John O’Donohue

Given a collection of processes that can. . .

Only communicate with significant latency

Only measure time intervals approximately

Fail in various ways

. . . we want to construct a shared notion of time.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

Why The Problem Is Interesting

Interesting for two reasons:
1 Good setting to examine general difficulties in distributed

systems:

Fault tolerance
Consistent view of changing data
Trust
Interplay between strength of guarantees and practicality

2 Useful primitive for distributed systems

Distributed checkpointing / stable property detection
Can be used to implement general state-machine algorithms
reliably [Lamport 74]

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

Why The Problem Is Interesting

Interesting for two reasons:
1 Good setting to examine general difficulties in distributed

systems:

Fault tolerance
Consistent view of changing data
Trust
Interplay between strength of guarantees and practicality

2 Useful primitive for distributed systems

Distributed checkpointing / stable property detection
Can be used to implement general state-machine algorithms
reliably [Lamport 74]

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

Overview

We will discuss two papers that solve this problem:
1 Optimal Clock Synchronization [Srikanth and Toueg ’87]

Assume reliable network
Provide logical clock with optimal agreement
Also optimal with respect to failures

2 Probabilistic Internal Clock Synchronization [Cristian and
Fetzer ’03]

Drop requirements on network
Provide very efficient logical clock
Only provide probabilistic guarantees

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

Overview

We will discuss two papers that solve this problem:
1 Optimal Clock Synchronization [Srikanth and Toueg ’87]

Assume reliable network
Provide logical clock with optimal agreement
Also optimal with respect to failures

2 Probabilistic Internal Clock Synchronization [Cristian and
Fetzer ’03]

Drop requirements on network
Provide very efficient logical clock
Only provide probabilistic guarantees

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Some Assumptions

We assume. . .

Clock drift is bounded:

1

1 + ρ
(t2 − t1) ≤ Ri (t2)− Ri (t1) ≤ (1 + ρ)(t2 − t1)

Communication and processing are reliable:

trecv − tsend ≤ tdel

Authenticated messages (we will relax this later).

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Some Assumptions

We assume. . .

Clock drift is bounded:

1

1 + ρ
(t2 − t1) ≤ Ri (t2)− Ri (t1) ≤ (1 + ρ)(t2 − t1)

Communication and processing are reliable:

trecv − tsend ≤ tdel

Authenticated messages (we will relax this later).

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Some Assumptions

We assume. . .

Clock drift is bounded:

1

1 + ρ
(t2 − t1) ≤ Ri (t2)− Ri (t1) ≤ (1 + ρ)(t2 − t1)

Communication and processing are reliable:

trecv − tsend ≤ tdel

Authenticated messages (we will relax this later).

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Our Goals

We want algorithms that satisfy the following:

Agreement between clocks:

|C k
i (t)− C k

j (t)| ≤ Dmax

Accuracy of clocks:

1

1 + γ
t + a ≤ C k

i (t) ≤ (1 + γ)t + b

Optimal accuracy (proved later):

γ = ρ

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Our Goals

We want algorithms that satisfy the following:

Agreement between clocks:

|C k
i (t)− C k

j (t)| ≤ Dmax

Accuracy of clocks:

1

1 + γ
t + a ≤ C k

i (t) ≤ (1 + γ)t + b

Optimal accuracy (proved later):

γ = ρ

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Our Goals

We want algorithms that satisfy the following:

Agreement between clocks:

|C k
i (t)− C k

j (t)| ≤ Dmax

Accuracy of clocks:

1

1 + γ
t + a ≤ C k

i (t) ≤ (1 + γ)t + b

Optimal accuracy (proved later):

γ = ρ

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Bad News. . .

Up to f processes can fail in the following ways:

Clock too slow or fast

Stuck clock bits

Crash, lost connectivity, buggy code

Byzantine failure

Definitions: A correct process follows the protocol and has a
working hardware clock. A non-correct process is faulty.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Bad News. . .

Up to f processes can fail in the following ways:

Clock too slow or fast

Stuck clock bits

Crash, lost connectivity, buggy code

Byzantine failure

Definitions: A correct process follows the protocol and has a
working hardware clock. A non-correct process is faulty.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Bad News. . .

Up to f processes can fail in the following ways:

Clock too slow or fast

Stuck clock bits

Crash, lost connectivity, buggy code

Byzantine failure

Definitions: A correct process follows the protocol and has a
working hardware clock. A non-correct process is faulty.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Bad News. . .

Up to f processes can fail in the following ways:

Clock too slow or fast

Stuck clock bits

Crash, lost connectivity, buggy code

Byzantine failure

Definitions: A correct process follows the protocol and has a
working hardware clock. A non-correct process is faulty.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Bad News. . .

Up to f processes can fail in the following ways:

Clock too slow or fast

Stuck clock bits

Crash, lost connectivity, buggy code

Byzantine failure

Definitions: A correct process follows the protocol and has a
working hardware clock. A non-correct process is faulty.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Basic Algorithm

We proceed in rounds. On round k, process i will:

1 Wait for P units according to clock C k−1
i

2 Broadcast “I’m ready to start round k”
3 After receiving f + 1 messages:

set C k
i to kP + α

rebroadcast the f + 1 messages

Definitions:

readyk is the real time of the first “I’m ready” message

begk is the real time of first process to set clock C k
i

endk is the last

The kth resynch period is the interval [begk , endk ]

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Basic Algorithm

We proceed in rounds. On round k, process i will:

1 Wait for P units according to clock C k−1
i

2 Broadcast “I’m ready to start round k”

3 After receiving f + 1 messages:

set C k
i to kP + α

rebroadcast the f + 1 messages

Definitions:

readyk is the real time of the first “I’m ready” message

begk is the real time of first process to set clock C k
i

endk is the last

The kth resynch period is the interval [begk , endk ]

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Basic Algorithm

We proceed in rounds. On round k, process i will:

1 Wait for P units according to clock C k−1
i

2 Broadcast “I’m ready to start round k”
3 After receiving f + 1 messages:

set C k
i to kP + α

rebroadcast the f + 1 messages

Definitions:

readyk is the real time of the first “I’m ready” message

begk is the real time of first process to set clock C k
i

endk is the last

The kth resynch period is the interval [begk , endk ]

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Basic Algorithm

We proceed in rounds. On round k, process i will:

1 Wait for P units according to clock C k−1
i

2 Broadcast “I’m ready to start round k”
3 After receiving f + 1 messages:

set C k
i to kP + α

rebroadcast the f + 1 messages

Definitions:

readyk is the real time of the first “I’m ready” message

begk is the real time of first process to set clock C k
i

endk is the last

The kth resynch period is the interval [begk , endk ]

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Basic Algorithm

We proceed in rounds. On round k, process i will:

1 Wait for P units according to clock C k−1
i

2 Broadcast “I’m ready to start round k”
3 After receiving f + 1 messages:

set C k
i to kP + α

rebroadcast the f + 1 messages

Definitions:

readyk is the real time of the first “I’m ready” message

begk is the real time of first process to set clock C k
i

endk is the last

The kth resynch period is the interval [begk , endk ]

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Basic Algorithm

We proceed in rounds. On round k, process i will:

1 Wait for P units according to clock C k−1
i

2 Broadcast “I’m ready to start round k”
3 After receiving f + 1 messages:

set C k
i to kP + α

rebroadcast the f + 1 messages

Definitions:

readyk is the real time of the first “I’m ready” message

begk is the real time of first process to set clock C k
i

endk is the last

The kth resynch period is the interval [begk , endk ]

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

The Basic Algorithm

We proceed in rounds. On round k, process i will:

1 Wait for P units according to clock C k−1
i

2 Broadcast “I’m ready to start round k”
3 After receiving f + 1 messages:

set C k
i to kP + α

rebroadcast the f + 1 messages

Definitions:

readyk is the real time of the first “I’m ready” message

begk is the real time of first process to set clock C k
i

endk is the last

The kth resynch period is the interval [begk , endk ]

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Outline of Proof of Agreement

Sketch of Agreement:

Proof is by induction on round number k.

Show that if kth clocks agree then (k + 1)st clocks also agree

Uses bounds on sizes of intervals between rounds and within
rounds.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Outline of Proof of Accuracy

We prove the two defining inequalities for accuracy separately:

By considering the fastest possible clock and showing it forms
an upper bound on any logical clock value, we can show

C k
i (t) ≤ P

P − α
(1 + ρ)t + b

Similarly, considering slowest possible clock yields

P

P − α + [tdel/(1 + ρ)]
(1 + ρ)−1t + a ≤ C k

i (t)

Putting these together we get Accuracy, which in turn gives
correctness.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

How close can we get?

What’s the best possible γ?

In run 1, let all clocks run as fast as possible:

Ci (t) ≤ (1 + γ)t + b

In run 2, let all clocks run as slow as possible:

1

1 + γ
t + a ≤ Ci (t)

Run 1 at time t looks the same as run 2 at time (1 + ρ)2t, so

(1 + γ)t + b ≥ (1 + ρ)2

1 + γ
t + a

Taking t →∞ we see γ ≥ ρ.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

How close can we get?

What’s the best possible γ?

In run 1, let all clocks run as fast as possible:

Ci (t) ≤ (1 + γ)t + b

In run 2, let all clocks run as slow as possible:

1

1 + γ
t + a ≤ Ci (t)

Run 1 at time t looks the same as run 2 at time (1 + ρ)2t, so

(1 + γ)t + b ≥ (1 + ρ)2

1 + γ
t + a

Taking t →∞ we see γ ≥ ρ.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

How close can we get?

What’s the best possible γ?

In run 1, let all clocks run as fast as possible:

Ci (t) ≤ (1 + γ)t + b

In run 2, let all clocks run as slow as possible:

1

1 + γ
t + a ≤ Ci (t)

Run 1 at time t looks the same as run 2 at time (1 + ρ)2t, so

(1 + γ)t + b ≥ (1 + ρ)2

1 + γ
t + a

Taking t →∞ we see γ ≥ ρ.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

How close can we get?

What’s the best possible γ?

In run 1, let all clocks run as fast as possible:

Ci (t) ≤ (1 + γ)t + b

In run 2, let all clocks run as slow as possible:

1

1 + γ
t + a ≤ Ci (t)

Run 1 at time t looks the same as run 2 at time (1 + ρ)2t, so

(1 + γ)t + b ≥ (1 + ρ)2

1 + γ
t + a

Taking t →∞ we see γ ≥ ρ.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

An Optimal Algorithm Drift-wise

Key insight:

There’s an interval of uncertainty in difference between arrival
time:

it could be P − α if clock is fast
it could be P − α + tdel(1 + ρ) if clock is slow

Algorithm 1 chooses left endpoint of the interval

Let’s choose midpoint instead

Proof of correctness goes through mostly unmodified, but drift rate
is optimal.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

An Optimal Algorithm Drift-wise

Key insight:

There’s an interval of uncertainty in difference between arrival
time:

it could be P − α if clock is fast
it could be P − α + tdel(1 + ρ) if clock is slow

Algorithm 1 chooses left endpoint of the interval

Let’s choose midpoint instead

Proof of correctness goes through mostly unmodified, but drift rate
is optimal.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

An Optimal Algorithm Drift-wise

Key insight:

There’s an interval of uncertainty in difference between arrival
time:

it could be P − α if clock is fast
it could be P − α + tdel(1 + ρ) if clock is slow

Algorithm 1 chooses left endpoint of the interval

Let’s choose midpoint instead

Proof of correctness goes through mostly unmodified, but drift rate
is optimal.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

An Optimal Algorithm Drift-wise

Key insight:

There’s an interval of uncertainty in difference between arrival
time:

it could be P − α if clock is fast
it could be P − α + tdel(1 + ρ) if clock is slow

Algorithm 1 chooses left endpoint of the interval

Let’s choose midpoint instead

Proof of correctness goes through mostly unmodified, but drift rate
is optimal.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Algorithm is Also Optimal Fail-wise

If an algorithm is correct, then 2f < n.

Easy proof - use the algorithm we have.

Authors give a different proof

Thus this algorithm is optimal with respect to fault tolerance.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Algorithm is Also Optimal Fail-wise

If an algorithm is correct, then 2f < n.

Easy proof - use the algorithm we have.

Authors give a different proof

Thus this algorithm is optimal with respect to fault tolerance.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Algorithm is Also Optimal Fail-wise

If an algorithm is correct, then 2f < n.

Easy proof - use the algorithm we have.

Authors give a different proof

Thus this algorithm is optimal with respect to fault tolerance.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Extensions to the Basic Algorithm

We can remove some of the limitations from the basic algorithm:

Strong authentication is too heavyweight. Only need:

Correctness
Unforgeability
Relay

Can use a broadcast primitive from the literature.

Can slightly modify algorithm for related tasks

Initialization
Integration

Can merge new clocks into a single continuous clock

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Extensions to the Basic Algorithm

We can remove some of the limitations from the basic algorithm:

Strong authentication is too heavyweight. Only need:

Correctness
Unforgeability
Relay

Can use a broadcast primitive from the literature.

Can slightly modify algorithm for related tasks

Initialization
Integration

Can merge new clocks into a single continuous clock

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model and Definitions
The Basic Algorithm
Enhancing the Basic Algorithm

Extensions to the Basic Algorithm

We can remove some of the limitations from the basic algorithm:

Strong authentication is too heavyweight. Only need:

Correctness
Unforgeability
Relay

Can use a broadcast primitive from the literature.

Can slightly modify algorithm for related tasks

Initialization
Integration

Can merge new clocks into a single continuous clock

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Motivation for Probabilistic Synchronization

The Optimal scheme has some problems:

Relies on guaranteed timely delivery (may not be an option)

Performance depends on tdel , which can be large

Bursty O(n2) messaging

Can we do without these limitations?

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Probabilistic System Model

The system model for the second paper is similar...

Correct clocks still have bounded drift

although assume ρ2 � ρ

No longer a maximum communication delay

delays given by probability distribution
this prevents us from stating results in terms of tmax .

There is a known minimum message delay tmin

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Probabilistic System Model

The system model for the second paper is similar...

Correct clocks still have bounded drift

although assume ρ2 � ρ

No longer a maximum communication delay

delays given by probability distribution
this prevents us from stating results in terms of tmax .

There is a known minimum message delay tmin

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Probabilistic System Model

The system model for the second paper is similar...

Correct clocks still have bounded drift

although assume ρ2 � ρ

No longer a maximum communication delay

delays given by probability distribution
this prevents us from stating results in terms of tmax .

There is a known minimum message delay tmin

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Failure Models

We distinguish between:

Crash failure — process stops completely

Performance failure — process runs too slow

Read failure — process fails to read remote clock in time

Arbitrary failure — anything else

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Probabilistic Remote Clock Reading

How does process p read process q’s clock?

p

q

1 p sends a request m1 with timestamp T0 to q

2 q sends a response m2 with timestamp T1 to p

3 p can infer that T1 is in a certain interval.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Probabilistic Remote Clock Reading

How does process p read process q’s clock?

p

q

m 1

T0

T1

1 p sends a request m1 with timestamp T0 to q

2 q sends a response m2 with timestamp T1 to p

3 p can infer that T1 is in a certain interval.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Probabilistic Remote Clock Reading

How does process p read process q’s clock?

p

q

m 1
m
2

T0

T1

T2

1 p sends a request m1 with timestamp T0 to q

2 q sends a response m2 with timestamp T1 to p

3 p can infer that T1 is in a certain interval.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Probabilistic Remote Clock Reading

How does process p read process q’s clock?

p

q

m 1
m
2

T0

T1

T2

1 p sends a request m1 with timestamp T0 to q

2 q sends a response m2 with timestamp T1 to p

3 p can infer that T1 is in a certain interval.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Properties

There are a number of properties that this protocol satisfies:

Timeliness

Error Bound

Crash Handling

Likely Success

Note that these are also satisfied by deterministic clock reading

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Properties

There are a number of properties that this protocol satisfies:

Timeliness

Error Bound

Crash Handling

Likely Success

Note that these are also satisfied by deterministic clock reading

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Properties

There are a number of properties that this protocol satisfies:

Timeliness

Error Bound

Crash Handling

Likely Success

Note that these are also satisfied by deterministic clock reading

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

Properties

There are a number of properties that this protocol satisfies:

Timeliness

Error Bound

Crash Handling

Likely Success

Note that these are also satisfied by deterministic clock reading

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

The High Level Algorithm

The synchronization algorithm is organized as follows:

A slot is a unit in which a single process gets to send

A cycle is a unit in which all processes get a chance to send

A round is a unit in which all processes must get estimates of
other clocks

p

q

r

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

The High Level Algorithm

The synchronization algorithm is organized as follows:

A slot is a unit in which a single process gets to send

A cycle is a unit in which all processes get a chance to send

A round is a unit in which all processes must get estimates of
other clocks

p

q

r

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

The High Level Algorithm

The synchronization algorithm is organized as follows:

A slot is a unit in which a single process gets to send

A cycle is a unit in which all processes get a chance to send

A round is a unit in which all processes must get estimates of
other clocks

p

q

r

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

The Contents of Each Exchange

Each message from p to q in the above protocol contains:

p’s send timestamp

p’s best approximation of every clock

The corresponding error bounds

p’s receive timestamp for each message from q

This data allows q to approximate p’s clock as above, for up to k2

message pairs.
If q trusts p can also use it to approximate other clocks.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

The Contents of Each Exchange

Each message from p to q in the above protocol contains:

p’s send timestamp

p’s best approximation of every clock

The corresponding error bounds

p’s receive timestamp for each message from q

This data allows q to approximate p’s clock as above, for up to k2

message pairs.

If q trusts p can also use it to approximate other clocks.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

The Contents of Each Exchange

Each message from p to q in the above protocol contains:

p’s send timestamp

p’s best approximation of every clock

The corresponding error bounds

p’s receive timestamp for each message from q

This data allows q to approximate p’s clock as above, for up to k2

message pairs.
If q trusts p can also use it to approximate other clocks.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

The Protocol

In each round, a process passes through the following modes:

1 It starts in request mode

2 It moves to reply mode when it has all clocks

3 Finally moves to finish mode when everyone has its clock

After kth cycle, it automatically returns to request mode for next
round.
Total message complexity is kN in the worst case, N + 1 in the
best.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

The Protocol

In each round, a process passes through the following modes:

1 It starts in request mode

2 It moves to reply mode when it has all clocks

3 Finally moves to finish mode when everyone has its clock

After kth cycle, it automatically returns to request mode for next
round.
Total message complexity is kN in the worst case, N + 1 in the
best.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

The Protocol

In each round, a process passes through the following modes:

1 It starts in request mode

2 It moves to reply mode when it has all clocks

3 Finally moves to finish mode when everyone has its clock

After kth cycle, it automatically returns to request mode for next
round.
Total message complexity is kN in the worst case, N + 1 in the
best.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

The Protocol

In each round, a process passes through the following modes:

1 It starts in request mode

2 It moves to reply mode when it has all clocks

3 Finally moves to finish mode when everyone has its clock

After kth cycle, it automatically returns to request mode for next
round.

Total message complexity is kN in the worst case, N + 1 in the
best.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

The Protocol

In each round, a process passes through the following modes:

1 It starts in request mode

2 It moves to reply mode when it has all clocks

3 Finally moves to finish mode when everyone has its clock

After kth cycle, it automatically returns to request mode for next
round.
Total message complexity is kN in the worst case, N + 1 in the
best.

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

From Approximations to Shared Time

Thus far p has a separate approximation of everyone’s clock, with
error bounds.
We plug the data into a midpoint convergence function, which:

Combines the estimates of the clocks to yield a single value

Is responsible for detecting and correcting errors

Is therefore fault-model specific

The authors provide four algorithms:

Crash-fail (requires n ≥ f + 1)

Read-fail (requires n ≥ 2f + 1)

Arbitrary-fail (requires n ≥ 3f + 1)

Hybrid-fail (requires n ≥ 3fA + 2fR + fC + 1)

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

System Model
Reading a Remote Clock
Probabilistic Synchronization Protocol
Shared Time

From Approximations to Shared Time

Thus far p has a separate approximation of everyone’s clock, with
error bounds.
We plug the data into a midpoint convergence function, which:

Combines the estimates of the clocks to yield a single value

Is responsible for detecting and correcting errors

Is therefore fault-model specific

The authors provide four algorithms:

Crash-fail (requires n ≥ f + 1)

Read-fail (requires n ≥ 2f + 1)

Arbitrary-fail (requires n ≥ 3f + 1)

Hybrid-fail (requires n ≥ 3fA + 2fR + fC + 1)

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

Discussion

Some thoughts for discussion:

“Optimal” isn’t always optimal

Good demonstration of the end-to-end principle

It would be nice to see some data

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

Discussion

Some thoughts for discussion:

“Optimal” isn’t always optimal

Good demonstration of the end-to-end principle

It would be nice to see some data

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

Discussion

Some thoughts for discussion:

“Optimal” isn’t always optimal

Good demonstration of the end-to-end principle

It would be nice to see some data

Michael George Time



Overview
Optimal Clock Synchronization

Probablistic Clock Synchronization
Conclusions

Discussion

Some thoughts for discussion:

“Optimal” isn’t always optimal

Good demonstration of the end-to-end principle

It would be nice to see some data

Michael George Time


	Overview
	Optimal Clock Synchronization
	System Model and Definitions
	The Basic Algorithm
	Enhancing the Basic Algorithm

	Probablistic Clock Synchronization
	System Model
	Reading a Remote Clock
	Probabilistic Synchronization Protocol
	Shared Time

	Conclusions

