Operating System Kernels

Presenter: Saikat Guha

Cornell University

CS 614, Fall 2005

Operating Systems

» Initially, the OS was a run-time library
» Batch ('55-'65): Resident, spooled jobs

» Multiprogrammed (late '60): Multiple jobs
» Time-sharing ('70s): Interactive jobs
» Multics, UNIX

» Networked OS, Distributed OS, Parallel OS,
Real-time OS

Operating System Kernels CS 614, Fall 2005

UNIX

» THE operating system
» Dennis Ritchie, Ken Thompson at AT&T

» "File” Abstraction

» Kernel

» Processes, IPC
» Filesystem

» Networking (eventually)
» Graphics (Windows)

» Userspace
» Shell

» Commands

Operating System Kernels CS 614, Fall 2005

Operating Systems

— N ™ < LO
(73] (V)] (73] (V)] (72}
()] (V)] (V5] (V)] (72}
(b} (D] (b} (D] (D]
(@] (®] (@] (@] (®]
o (@] o (@] (@]
2l 2l 2l 2l 2%
Ker nel
Har dwar e

User-Kernel Split

Operating System Kernels CS 614, Fall 2005

Operating Systems

Process 1
Process 2
Process 3
Process 4
Process 5

e
N

v

Fi | esystem Ker nel Pi pe

*

v Har dwar e

Vg
N

Monolothic Kernel

Operating System Kernels CS 614, Fall 2005

Operating Systems

-
i (q\| o

o 4
n wn 7] *J; h
()] (V)] (7))} > 2
Q ()] Q N
(@] (@] (@) beby —
o o o = 2
a a o iT

Al A
A
! |
-
| PC Ker nel
Hardware Y

Microkernel

Operating System Kernels CS 614, Fall 2005

1-Kernels

» Minimal services

» Usually threads or processes, address space and
inter-process communication (IPC)

» User-space Filesystem, Network, Graphics, even
device drivers sometimes.

Operating System Kernels CS 614, Fall 2005

Monolithic Kernels: Advantages

» Kernel has access to everything

» All optimizations possible
» All techniques/mechanisms/concepts can be
implemented

» Extended by simply adding more code
» Linux at 3.3M lines of code

» Tackle complexity

» Layered kernels
» Modular kernels
» Object oriented kernels. Do C++, Java, C# help?

Operating System Kernels CS 614, Fall 2005

1-Kernels: Advantages

» Minimal

» Smaller trusted base
» Less error prone
» Server malfunction easily isolated

» Elegant

» Enforces modularity
» Restartable user-level services

» Extensible
» Different servers/API can coexist

Operating System Kernels CS 614, Fall 2005

» 1st generation u-kernels

» Mach (CMU)?
» Chorus (Inria, Chorus systems)

» Amoeba (Vrije University)
» L3 (GMD)?

lExternal pager
2User-Level Driver

Operating System Kernels CS 614, Fall 2005

1-Kernels: Problems

» Overheads
» Chen and Bershad, '93
» Impact of caches, locality, TLB collisions
» Up 66% degradation in Mach

» Co-located servers for performance

» Can be optimized to be fast on an architecture

» But, performance not preserved on other
architectures

Operating System Kernels CS 614, Fall 2005

» 2nd generation pu-kernels
» Spin (UWash)
» Exokernel (MIT)
» L4 (GMD/IBM/UKa)3

3User-Level Address Space

Operating System Kernels CS 614, Fall 2005

Summary of First Paper

» The Performance of u-Kernel-Based Systems
(Hartig et al., SOSP '97)

» Evaluates a L* pu-kernel based system
» Ports Linux to run on top of L*
» Suggests improvements

Operating System Kernels CS 614, Fall 2005

L*-Linux

filesystem
net wor k
— (Q\ o™
(7)) wn (7))
2 2 2 x
(@) (&) (@) c
o (@] o __
2% 2l 2l —
L4 Backend
L4 Ker nel
Har dwar e
4 .
L*-Linux

Operating System Kernels CS 614, Fall 2005

» 2 basic concepts

» Threads
» Address Spaces (AS)

» Recursive construction of AS

» Grant - Give a page to another AS
» Map - Share a page with another AS
» Demap - Revoke a mapped or granted page

» 1/O ports treated as AS
» Hardware interrupts treated as IPC

Operating System Kernels CS 614, Fall 2005

» LB caches page-table lookups

» Flused during context switch

» Flushing not necessary for tagged TLBs
» L*Linux avoids frequent flushes

» Pentium CPU’s emulate tagged TLBs for small
address spaces

» syscall time
» Unix — 20us
» Mach — 114us
» L* - 5us

Operating System Kernels CS 614, Fall 2005

Performance

Is L*-Linux a practical system?

Operating System Kernels CS 614, Fall 2005

Performance

write {dev/null [/af] ﬁ T T e s
null process [far] ' —3 64.5
simple process [la]
fbin/sh process [far] _ R
mmap [ﬁ:l'.-'] | _ S U S R e e [oielelele el i
Z-PI'CH: context switch [lar L S B i R R
8-proc context switch fm} PR e e : ,
pipe [Iﬂ"] T) [;._“J ,. 0 .- e I. : ot : T g 1?.:.- “F"’-| 1,? :}__,:-_ R N P
UDP {lai) | | T R
RPC/UDP [/at]
TCP [{atf]
RPC/TCP [lat)
pipe Eﬁw"l
gﬁt&f&ﬂ[ﬁw"] : __ MkLinux (in-kernel)
mmap reread [Bw™!]] MkLinux (user)

. T T T T T _— T | T T T T

1 2 3 4 5 6 7 8 9 10 11 12

Is L*-Linux a practical system? Yes

Operating System Kernels CS 614, Fall 2005

Performance

Is L*-Linux a practical system? Yes

Operating System Kernels CS 614, Fall 2005

Performance

» L* incurs 5%—-10% overhead

» Collocation alone does not solve performance
problems

» What about L* without collocation?
» L*Linux is proof-of-concept
» Pipes can be made faster

» Better VM in non-legacy mode
» Can benefit from cache partitioning

Operating System Kernels CS 614, Fall 2005

Comparison

L*-Linux Flux OSKit
» Highly optimized » Tons of
(for x86) functionality
> :unctionality (Linux, BSD, Java, SML, ...)
imited by Linux » Not tuned for high
» Untrusted performance
components » Implementation

isolated details exposed

Operating System Kernels CS 614, Fall 2005

Flux OSKit

» Framework and reusable OS components
» Focus on component of research-interest

» Reuse other existing components for
functionality

Operating System Kernels CS 614, Fall 2005

Flux OSKit

L] Mative OSKit Code - ;
| Encapsulated Legacy Cade Client Operating System or
______________ - Language Run-Time System
| Executable]
. Loadng
iR | File System |
FreeBSD HatBsh Reader | (e Map | FresBSD
Networking File System | | — . —— | Manager | | Math Library
| Minimal C Library
,r Malloo
| Pebuggiag
A , List-basad
Linux Glua | FreeBSD Glue | Memary Manager
|_ Genaric D&m-%pp:n - F = I |
Kernel Support =MP |

Flux OSKit Components

Operating System Kernels CS 614, Fall 2005

Flux OSKit

» Bootloader
» Multiboot compliant

» Kernel Support Library

» Architecture specific

» Memory Management Library
» kmalloc(), alignment etc.

» Minimal libc

» non-buffered read(), write() etc.
» minimizes dependencies

Operating System Kernels CS 614, Fall 2005

Flux OSKit

» Debugging Support

» GDB over serial line

» Device Driver Support
» Drivers from Linux, FreeBSD inside wrappers

» Protocol Stacks
» “Wrapped” FreeBSD network stack

» File System
» “Wrapped” NetBSD code

Operating System Kernels CS 614, Fall 2005

Flux OSKit

» OSKit components are separable, no
dependence
» Other OS: Modularity does not imply independence

Fi | esystem Menory Manager
{ void *malloc() {
}r{ai|oc()7 y ™
} -
/
Filesystem Memory Manager :‘/(r)riafjl oc(){ /—#\‘/gfmal | oc(y
{ S’ voi d *malloc() { , C_rralloc();\ } mal | oc() ;
mal | oc() — y |

\

| \
c_nal Ic = ny_nal | oc

Very little overhead
» Provides abstractions

» Doesn't hide implementation

» ML/OS

» SML: Static Typing, Concurrency through
continuations, No stack, Aggressive heap usage,
Interpreted.

» ML/OS: 2 people, one semester using OSKit

» Java
» Existing JVM
» Java/OS: 3 weeks using OSKit

» SR

» Concurrent programming language

Operating System Kernels CS 614, Fall 2005

» L*Linux: p-Kernels can be fast

» Full system binary-compatible with Linux runs
5%-10% slower.

» FluxOSKit: Kernels from reusable components
» Write fully-functional research OS in weeks

Operating System Kernels CS 614, Fall 2005

