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Operating Systems

» Initially, the OS was a run-time library
» Batch ('55-'65): Resident, spooled jobs

» Multiprogrammed (late '60): Multiple jobs
» Time-sharing ('70s): Interactive jobs
» Multics, UNIX

» Networked OS, Distributed OS, Parallel OS,
Real-time OS
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UNIX

» THE operating system
» Dennis Ritchie, Ken Thompson at AT&T

» "File” Abstraction

» Kernel

» Processes, IPC
» Filesystem

» Networking (eventually)
» Graphics (Windows)

» Userspace
» Shell

» Commands
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Operating Systems
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User-Kernel Split

Operating System Kernels CS 614, Fall 2005



Operating Systems
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Operating Systems
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1-Kernels

» Minimal services

» Usually threads or processes, address space and
inter-process communication (IPC)

» User-space Filesystem, Network, Graphics, even
device drivers sometimes.
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Monolithic Kernels: Advantages

» Kernel has access to everything

» All optimizations possible
» All techniques/mechanisms/concepts can be
implemented

» Extended by simply adding more code
» Linux at 3.3M lines of code

» Tackle complexity

» Layered kernels
» Modular kernels
» Object oriented kernels. Do C++, Java, C# help?
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1-Kernels: Advantages

» Minimal

» Smaller trusted base
» Less error prone
» Server malfunction easily isolated

» Elegant

» Enforces modularity
» Restartable user-level services

» Extensible
» Different servers/API can coexist
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» 1st generation u-kernels

» Mach (CMU)?
» Chorus (Inria, Chorus systems)

» Amoeba (Vrije University)
» L3 (GMD)?

lExternal pager
2User-Level Driver
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1-Kernels: Problems

» Overheads
» Chen and Bershad, '93
» Impact of caches, locality, TLB collisions
» Up 66% degradation in Mach

» Co-located servers for performance

» Can be optimized to be fast on an architecture

» But, performance not preserved on other
architectures
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» 2nd generation pu-kernels
» Spin (UWash)
» Exokernel (MIT)
» L4 (GMD/IBM/UKa)3

3User-Level Address Space
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Summary of First Paper

» The Performance of u-Kernel-Based Systems
(Hartig et al., SOSP '97)

» Evaluates a L* pu-kernel based system
» Ports Linux to run on top of L*
» Suggests improvements
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L*-Linux
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» 2 basic concepts

» Threads
» Address Spaces (AS)

» Recursive construction of AS

» Grant - Give a page to another AS
» Map - Share a page with another AS
» Demap - Revoke a mapped or granted page

» 1/O ports treated as AS
» Hardware interrupts treated as IPC
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» LB caches page-table lookups

» Flused during context switch

» Flushing not necessary for tagged TLBs
» L*Linux avoids frequent flushes

» Pentium CPU’s emulate tagged TLBs for small
address spaces

» syscall time
» Unix — 20us
» Mach — 114us
» L* - 5us
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Performance

Is L*-Linux a practical system?
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Performance
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Is L*-Linux a practical system? Yes
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Performance

Is L*-Linux a practical system? Yes
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Performance

» L* incurs 5%—-10% overhead

» Collocation alone does not solve performance
problems

» What about L* without collocation?
» L*Linux is proof-of-concept
» Pipes can be made faster

» Better VM in non-legacy mode
» Can benefit from cache partitioning
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Comparison

L*-Linux Flux OSKit
» Highly optimized » Tons of
(for x86) functionality
> :unctionality (Linux, BSD, Java, SML, ...)
imited by Linux » Not tuned for high
» Untrusted performance
components » Implementation

isolated details exposed
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Flux OSKit

» Framework and reusable OS components
» Focus on component of research-interest

» Reuse other existing components for
functionality
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Flux OSKit
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Flux OSKit Components
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Flux OSKit

» Bootloader
» Multiboot compliant

» Kernel Support Library

» Architecture specific

» Memory Management Library
» kmalloc(), alignment etc.

» Minimal libc

» non-buffered read(), write() etc.
» minimizes dependencies
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Flux OSKit

» Debugging Support

» GDB over serial line

» Device Driver Support
» Drivers from Linux, FreeBSD inside wrappers

» Protocol Stacks
» “Wrapped” FreeBSD network stack

» File System
» “Wrapped” NetBSD code
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Flux OSKit

» OSKit components are separable, no
dependence
» Other OS: Modularity does not imply independence
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Very little overhead
» Provides abstractions

» Doesn't hide implementation



» ML/OS

» SML: Static Typing, Concurrency through
continuations, No stack, Aggressive heap usage,
Interpreted.

» ML/OS: 2 people, one semester using OSKit

» Java
» Existing JVM
» Java/OS: 3 weeks using OSKit

» SR

» Concurrent programming language
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» L*Linux: p-Kernels can be fast

» Full system binary-compatible with Linux runs
5%-10% slower.

» FluxOSKit: Kernels from reusable components
» Write fully-functional research OS in weeks
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