
Operating System Kernels

Presenter: Saikat Guha

Cornell University

CS 614, Fall 2005

Operating System Kernels CS 614, Fall 2005

Operating Systems

I Initially, the OS was a run-time library

I Batch (’55–’65): Resident, spooled jobs

I Multiprogrammed (late ’60): Multiple jobs
I Time-sharing (’70s): Interactive jobs

I Multics, UNIX

I Networked OS, Distributed OS, Parallel OS,
Real-time OS

Operating System Kernels CS 614, Fall 2005

UNIX

I THE operating system
I Dennis Ritchie, Ken Thompson at AT&T

I “File” Abstraction
I Kernel

I Processes, IPC
I Filesystem
I Networking (eventually)
I Graphics (Windows)

I Userspace
I Shell
I Commands

Operating System Kernels CS 614, Fall 2005

Operating Systems

P
r
o
c
e
s
s

1

P
r
o
c
e
s
s

2

P
r
o
c
e
s
s

3

P
r
o
c
e
s
s

4

P
r
o
c
e
s
s

5

Kernel

Hardware

User-Kernel Split

Operating System Kernels CS 614, Fall 2005

Operating Systems

P
r
o
c
e
s
s

1

P
r
o
c
e
s
s

2

P
r
o
c
e
s
s

3

P
r
o
c
e
s
s

4

P
r
o
c
e
s
s

5

Kernel

Hardware

Filesystem Pipe

Monolothic Kernel

Operating System Kernels CS 614, Fall 2005

Operating Systems

P
r
o
c
e
s
s

1

P
r
o
c
e
s
s

2

P
r
o
c
e
s
s

3

F
i
l
e
s
y
s
t
e
m

N
e
t
w
o
r
k

Kernel

Hardware

IPC

Microkernel

Operating System Kernels CS 614, Fall 2005

µ-Kernels

I Minimal services

I Usually threads or processes, address space and
inter-process communication (IPC)

I User-space Filesystem, Network, Graphics, even
device drivers sometimes.

Operating System Kernels CS 614, Fall 2005

Monolithic Kernels: Advantages

I Kernel has access to everything
I All optimizations possible
I All techniques/mechanisms/concepts can be

implemented

I Extended by simply adding more code
I Linux at 3.3M lines of code

I Tackle complexity
I Layered kernels
I Modular kernels
I Object oriented kernels. Do C++, Java, C# help?

Operating System Kernels CS 614, Fall 2005

µ-Kernels: Advantages

I Minimal
I Smaller trusted base
I Less error prone
I Server malfunction easily isolated

I Elegant
I Enforces modularity
I Restartable user-level services

I Extensible
I Different servers/API can coexist

Operating System Kernels CS 614, Fall 2005

µ-Kernels

I 1st generation µ-kernels
I Mach (CMU)1

I Chorus (Inria, Chorus systems)
I Amoeba (Vrije University)
I L3 (GMD)2

1External pager
2User-Level Driver

Operating System Kernels CS 614, Fall 2005

µ-Kernels: Problems

I Overheads
I Chen and Bershad, ’93
I Impact of caches, locality, TLB collisions
I Up 66% degradation in Mach

I Co-located servers for performance
I Can be optimized to be fast on an architecture

I But, performance not preserved on other
architectures

Operating System Kernels CS 614, Fall 2005

µ-Kernels

I 2nd generation µ-kernels
I Spin (UWash)
I Exokernel (MIT)
I L4 (GMD/IBM/UKa)3

3User-Level Address Space
Operating System Kernels CS 614, Fall 2005

Summary of First Paper

I The Performance of µ-Kernel-Based Systems
(Härtig et al., SOSP ’97)

I Evaluates a L4
µ-kernel based system

I Ports Linux to run on top of L4

I Suggests improvements

Operating System Kernels CS 614, Fall 2005

L4-Linux

P
r
o
c
e
s
s

1

P
r
o
c
e
s
s

2

P
r
o
c
e
s
s

3

L
i
n
u
x

L4 Kernel

Hardware

L4 Backend

filesystem

network

L4-Linux

Operating System Kernels CS 614, Fall 2005

L4-Linux

I 2 basic concepts
I Threads
I Address Spaces (AS)

I Recursive construction of AS
I Grant - Give a page to another AS
I Map - Share a page with another AS
I Demap - Revoke a mapped or granted page

I I/O ports treated as AS

I Hardware interrupts treated as IPC

Operating System Kernels CS 614, Fall 2005

L4-Linux

I TLB caches page-table lookups
I Flused during context switch
I Flushing not necessary for tagged TLBs

I L4-Linux avoids frequent flushes
I Pentium CPU’s emulate tagged TLBs for small

address spaces

I syscall time
I Unix – 20µs
I Mach – 114µs
I L4 – 5µs

Operating System Kernels CS 614, Fall 2005

Performance

Is L4-Linux a practical system?

Operating System Kernels CS 614, Fall 2005

Performance

Is L4-Linux a practical system? Yes

Operating System Kernels CS 614, Fall 2005

Performance

Is L4-Linux a practical system? Yes

Operating System Kernels CS 614, Fall 2005

Performance

I L4 incurs 5%–10% overhead
I Collocation alone does not solve performance

problems
I What about L4 without collocation?

I L4-Linux is proof-of-concept
I Pipes can be made faster
I Better VM in non-legacy mode
I Can benefit from cache partitioning

Operating System Kernels CS 614, Fall 2005

Comparison

L4-Linux

I Highly optimized
(for x86)

I Functionality
limited by Linux

I Untrusted
components
isolated

Flux OSKit

I Tons of
functionality
(Linux, BSD, Java, SML, ...)

I Not tuned for high
performance

I Implementation
details exposed

Operating System Kernels CS 614, Fall 2005

Flux OSKit

I Framework and reusable OS components

I Focus on component of research-interest

I Reuse other existing components for
functionality

Operating System Kernels CS 614, Fall 2005

Flux OSKit

Flux OSKit Components

Operating System Kernels CS 614, Fall 2005

Flux OSKit

I Bootloader
I Multiboot compliant

I Kernel Support Library
I Architecture specific

I Memory Management Library
I kmalloc(), alignment etc.

I Minimal libc
I non-buffered read(), write() etc.
I minimizes dependencies

Operating System Kernels CS 614, Fall 2005

Flux OSKit

I Debugging Support
I GDB over serial line

I Device Driver Support
I Drivers from Linux, FreeBSD inside wrappers

I Protocol Stacks
I “Wrapped” FreeBSD network stack

I File System
I “Wrapped” NetBSD code

Operating System Kernels CS 614, Fall 2005

Flux OSKit

I OSKit components are separable, no
dependence

I Other OS: Modularity does not imply independence

{
 ...
 malloc()
 ...
}

void *malloc() {
 ...
}

Filesystem Memory Manager

{
 ...
 malloc()
 ...
}

void *malloc() {
 ...
}

void
*malloc() {
 c_malloc();
}

void
*my_malloc() {
 malloc();
}

...
c_malloc = my_malloc
...

Filesystem Memory Manager

Very little overhead

I Provides abstractions
I Doesn’t hide implementation

Operating System Kernels CS 614, Fall 2005

Case Studies

I ML/OS
I SML: Static Typing, Concurrency through

continuations, No stack, Aggressive heap usage,
Interpreted.

I ML/OS: 2 people, one semester using OSKit

I Java
I Existing JVM
I Java/OS: 3 weeks using OSKit

I SR
I Concurrent programming language

Operating System Kernels CS 614, Fall 2005

Summary

I L4-Linux: µ-Kernels can be fast
I Full system binary-compatible with Linux runs

5%–10% slower.

I FluxOSKit: Kernels from reusable components
I Write fully-functional research OS in weeks

Operating System Kernels CS 614, Fall 2005

