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Storage & File Systems

Ravikant Dintyala

Boot Block Super Block

Inodes Data Blocks

• Boot block – disk layout information
• Super block – fs size & type, free inode list, free 

data block bitmap 
• Inodes
• Data Blocks

Unix File System 4.2 BSD

KJL84 - Idea
• Divide disk into cylinder groups (4 MB), each 

cylindrical group has sufficient information to 
handle free space.

• Increase block size, address fragmentation.
• Writes are always in full blocks, except for a 

partial block at the end.
• Blocks are allocated in the same group 

whenever available otherwise they are allocated 
in a “rotationally optimal manner”.
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Layout Policies

• Global – place new directory in a cylinder 
group that has  maximum free inodes and 
minimum no of directories, force long 
seeks to new cylinder groups.

• Local – keep file allocation rotationally 
optimal within a cylinder group, spread big 
files across the disk in chunks of 1MB.
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Performance Metadata

• Metadata (directories, inodes, free block 
maps, ..) give structure to raw storage 
capacity.

• File system must maintain integrity of 
metadata in face of unpredictable failures.

• Disk image must be consistent.

Update Dependencies
• Never point to a structure before it has been initialized.

– An inode must be initialized before a directory entry references 
it.

• Never reuse a resource before nullifying all previous 
pointers to it.
– An inode’s pointer to a data block must be nullified before that 

disk block may be reallocated for a new inode.
• Never reset the last pointer to a live resource before a 

new pointer has been set.
– When renaming a file, do not remove the old name for an inode

until after the new name has been written.

Options
• Synchronous writes – compromise 

performance.
• Asynchronous writes – compromise 

integrity.
• Special purpose hardware (NVRAM) –

costly.
• Atomic updates (write ahead logging).

Soft Updates - Idea
• Write back caching.
• Track dependencies 

among updates.
• Sequence updates 

respecting these 
dependencies.

• Break cycles by roll-
back before block is 
written and roll-forward 
afterward.
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Cyclic Dependency
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Undo/Redo
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Recovery
• Possible inconsistencies:

– Unused blocks may not be in free space 
maps.

– Unreferenced nodes may not appear in the 
free inode maps.

– Inode link counts may exceed the actual 
number of directory entries.

• Disk Image is safe to use.
• Run fsck (background/during downtime) to 

reclaim resources.

Other Issues addressed
• Memory used for dependency structures –

hack to handle deletes of large directory 
trees.

• Useless write-backs – upgraded flush 
routines and cache replacement routines 
based on dependency information (final 
overhead – 2.5 – 5%).

Performance

• Measure the speed with which a system 
can create, read, delete 32MB of data for 
files that range in size from 2KB to 4MB.

• Scenarios compared:
– No Order (no write order enforced)
– Soft Updates
– Conventional (BSD FFS)

Create
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Create

64 KB can be 
written in a 
single disk 
operation

Create

32MB cylinder 
group

Delete

Soft-Updates outperforms No Order since the latter actually removes the files.

Read

Log-Structured File System - Idea
• Log is the only structure on the disk.
• Buffer sequence of changes, write it all at 

once sequentially to the end of the log.
• Write includes almost everything: file data, 

indexes, inodes.
• Maintain indexes for efficient read.
• Clean ‘segments’ to maintain large free 

areas.

Data Structures - Location
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Disk Status - FFS
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Writing Log - Compaction

1 2 3
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Segments

• Sprite LFS uses a hybrid scheme.
– Disk divided into fixed size segments.

• Threaded between segments.
• Compaction within a segment.

– Segment size chosen so that transfer time is much greater than 
access time: 512 KB or 1 MB.

21 3 4 5 6

Segment Summary
• Each segment maintains a summary that 

identifies each piece of information in a 
segment - for each data block, it has the 
file number, file version, inode number and 
the block number of that block in the file.

• Cross checking the file’s version, 
inode/indirect block and the segment 
summary helps identify dead data.

Segment Cleaning
• Four policy issues:

– When should segment cleaner execute?
• Continuously, only when needed, etc.

– How many segments to clean at a time?
• Must find enough free space to result in one clean segment.

– Which segments to clean?
• Lowest utilized, oldest, etc.

– What re-orderings to perform when rewriting a segment?
• Group files in same directory, group temporally, group by age, etc.

• First two ignored, do not seem to be important.
– Starts cleaning when #segments drop below a watermark. 

Cleans a few tens of segments at a time.
• Third and fourth are important.

Selecting segments - Write Cost
• Write cost is the ratio of total work done to useful work 

done.

(3 + 2 + 1)/1

Write Cost

Clean Segments with least u
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Simulation
• Fixed number of 4 KB files. No reading, just rewriting.
• Two access patterns:

– Uniform (no cleaner reordering)
– Hot-and-cold (cleaner reordering based on age)

• One group: contains 10% of the files with 90% chance of being 
selected.

• Other group: contains 90% of the files with 10% chance of being 
selected.

• Simulator runs till all clean segments exhausted, then 
runs cleaner until a threshold of clean segments 
reached.

• Cleaner always chooses least-utilized segments, 
reorders blocks by age 

Results, Introspection

• How to clean such that reordering by age is efficient? 
• How to get a bimodal distribution for u so that average u 

is low?

Idea
• Want to have greater amount of free space in circulation 

so that segment cleaner finds free space whenever it 
wants

• Free space in “old” segments is getting locked for a 
longer time under ‘least u’ policy

• ‘Running Average Oldness’ of data easy to maintain in 
the segment summary (actually the paper uses current 
time - the time of most recent modification)

Results

Lowest utilization

Max benefit

Crash Recovery

• Two-pronged approach:
– Checkpoint: a complete, self-contained record 

of a consistent state of the file system.
– Roll-forward: recover operations performed 

after the checkpoint by re-doing the 
operations after the checkpoint (only the 
recent log needs to be accessed).

Performance – small files

• Small-file performance under Sprite LFS and SunOS: create 10,000 1K files, then 
read back in same order, then delete.

– The logging approach provides an order of magnitude speedup for creation and deletion.
– In SunOS, disk 85% saturated, so faster processors will not help much. In Sprite LFS, disk 

only 17% saturated, while the CPU was 100% utilized.
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Performance - large files

• Large-file performance under Sprite LFS and SunOS: create a 100-MB file with sequential writes, 
read back sequentially, write 100 MB randomly, read 100 MB randomly, finally read sequentially.

Segment Utilization (in practice)

Disk Usage

• Block types marked with ‘*’ have equivalent data structures in Unix FFS.

Disk Usage

• Block types marked with ‘*’ have equivalent data structures in Unix FFS.

Increased 
usage of Inode 
map due to the 
regular cleaning 

of segments

Conclusion
• Soft Updates allow writes to go out of order, 

cash on disk drivers’ write scheduling. Nice way 
of breaking dependencies by book keeping.

• Soft Updates – disk image consistent, immediate 
recovery.

• LFS uses disk as a log, disk write bandwidth 
utilized efficiently. Nice cost benefit based 
segment cleaning.

• LFS – a very good alternative if the workload is 
small file intensive.

• LFS – recovery by checkpoint + roll forward of 
the recent log.

Unaddressed Issues

• LFS - how to maintain file locality while 
cleaning segments?


