
1

Storage & File Systems

Ravikant Dintyala

Boot Block Super Block

Inodes Data Blocks

• Boot block – disk layout information
• Super block – fs size & type, free inode list, free

data block bitmap
• Inodes
• Data Blocks

Unix File System 4.2 BSD

KJL84 - Idea
• Divide disk into cylinder groups (4 MB), each

cylindrical group has sufficient information to
handle free space.

• Increase block size, address fragmentation.
• Writes are always in full blocks, except for a

partial block at the end.
• Blocks are allocated in the same group

whenever available otherwise they are allocated
in a “rotationally optimal manner”.

KJL84 - Continued

Boot Block

Super Block

Data Blocks

Summary

Inodes

Cylinder
Group 0

Data Blocks

Super Block

Data Blocks

Summary

Inodes

Cylinder
Group 1

Super Block

Data Blocks

Summary

Inodes

Cylinder
Group n

KJL84 - Continued

Boot Block

Super Block

Data Blocks

Summary

Inodes

Cylinder
Group 0

Data Blocks

Super Block

Data Blocks

Summary

Inodes

Cylinder
Group 1

Super Block

Data Blocks

Summary

Inodes

Cylinder
Group nNote that Super

blocks are not on
the same surface

Layout Policies

• Global – place new directory in a cylinder
group that has maximum free inodes and
minimum no of directories, force long
seeks to new cylinder groups.

• Local – keep file allocation rotationally
optimal within a cylinder group, spread big
files across the disk in chunks of 1MB.

2

Performance Metadata

• Metadata (directories, inodes, free block
maps, ..) give structure to raw storage
capacity.

• File system must maintain integrity of
metadata in face of unpredictable failures.

• Disk image must be consistent.

Update Dependencies
• Never point to a structure before it has been initialized.

– An inode must be initialized before a directory entry references
it.

• Never reuse a resource before nullifying all previous
pointers to it.
– An inode’s pointer to a data block must be nullified before that

disk block may be reallocated for a new inode.
• Never reset the last pointer to a live resource before a

new pointer has been set.
– When renaming a file, do not remove the old name for an inode

until after the new name has been written.

Options
• Synchronous writes – compromise

performance.
• Asynchronous writes – compromise

integrity.
• Special purpose hardware (NVRAM) –

costly.
• Atomic updates (write ahead logging).

Soft Updates - Idea
• Write back caching.
• Track dependencies

among updates.
• Sequence updates

respecting these
dependencies.

• Break cycles by roll-
back before block is
written and roll-forward
afterward.

File System

Current

Consistent

Applications

DAG dependency graphs

O1

O3O2

O4

O1

O3O2

O4

O3O2

O4

O3O2

O4 O4

T1 T2 O1

O3O2

O4

T1 T2

T1 T2
T1 T2

T1 T2

Step 1

Step 2

Step 3

Step 5

Step 4
Step 6

T1 T2

3

Cyclic Dependency

Inode #4

Inode #6

< _,#0 >
Inode #5

Inode #7

< B,#5 >

< C,#7 >

Inode Block Directory Block

Free Used

Original Organization

Cyclic Dependency

Inode #4

Inode #6

< A,#4 >
Inode #5

Inode #7

< B,#5 >

< C,#7 >

Inode Block Directory Block

Free Used

Create File A

Cyclic Dependency

Inode #4

Inode #6

< A,#4 >
Inode #5

Inode #7

< -,#0 >

< C,#7 >

Inode Block Directory Block

Free Used

Delete File B

Undo/Redo

Inode #4

Inode #6

< A,#4 >
Inode #5

Inode #7

< -,#0 >

< C,#7 >

Inode Block Directory Block

Main Memory

Inode #4

Inode #6

< _,#0 >
Inode #5

Inode #7

< B,#5 >

< C,#7 >

Inode Block Directory Block

Disk

After Metadata Updates

Undo/Redo

Inode #4

Inode #6

< A,#4 >
Inode #5

Inode #7

< -,#0 >

< C,#7 >

Inode Block Directory Block

Main Memory

Inode #4

Inode #6

< _,#0 >
Inode #5

Inode #7

< _,#0 >

< C,#7 >

Inode Block Directory Block

Disk

Safe version of Directory Block Written

Undo/Redo

Inode #4

Inode #6

< A,#4 >
Inode #5

Inode #7

< -,#0 >

< C,#7 >

Inode Block Directory Block

Main Memory

Inode #4

Inode #6

< _,#0 >
Inode #5

Inode #7

< _,#0 >

< C,#7 >

Inode Block Directory Block

Disk

Inode Block Written

4

Undo/Redo

Inode #4

Inode #6

< A,#4 >
Inode #5

Inode #7

< -,#0 >

< C,#7 >

Inode Block Directory Block

Main Memory

Inode #4

Inode #6

< A,#4 >
Inode #5

Inode #7

< _,#0 >

< C,#7 >

Inode Block Directory Block

Disk

Directory Block Written

Dependencies

Block Allocation

Initialize
block

Set block
pointer

Free
bitmap

Clear block
pointer

Free
bitmap

New
inode

New
directory

entry

Free
bitmap

Dec
inode
ref cnt

Clear
directory

entry

Block Deallocation

Link Removal Link Addition

Recovery
• Possible inconsistencies:

– Unused blocks may not be in free space
maps.

– Unreferenced nodes may not appear in the
free inode maps.

– Inode link counts may exceed the actual
number of directory entries.

• Disk Image is safe to use.
• Run fsck (background/during downtime) to

reclaim resources.

Other Issues addressed
• Memory used for dependency structures –

hack to handle deletes of large directory
trees.

• Useless write-backs – upgraded flush
routines and cache replacement routines
based on dependency information (final
overhead – 2.5 – 5%).

Performance

• Measure the speed with which a system
can create, read, delete 32MB of data for
files that range in size from 2KB to 4MB.

• Scenarios compared:
– No Order (no write order enforced)
– Soft Updates
– Conventional (BSD FFS)

Create

5

Create

64 KB can be
written in a
single disk
operation

Create

32MB cylinder
group

Delete

Soft-Updates outperforms No Order since the latter actually removes the files.

Read

Log-Structured File System - Idea
• Log is the only structure on the disk.
• Buffer sequence of changes, write it all at

once sequentially to the end of the log.
• Write includes almost everything: file data,

indexes, inodes.
• Maintain indexes for efficient read.
• Clean ‘segments’ to maintain large free

areas.

Data Structures - Location

6

Disk Status - FFS

After create dir1/file1

Inode Directory Data Free

dir1

Disk Status - FFS

After create dir2/file2

Inode Directory Data Free

dir1 dir2

file1

Disk Status - FFS

Delayed write-back

Inode Directory Data Free

dir1 dir2

file1 file2

Disk Status - LFS

Inode Directory Data Free

file1

dir1

file2

dir2

Writing Log?

Free – current log Used

Writing Log - Threading

1 42 3

Free – current log Used

5 6

7

Writing Log - Compaction

1 2 3

Free – current log Used

4 5 6

Segments

• Sprite LFS uses a hybrid scheme.
– Disk divided into fixed size segments.

• Threaded between segments.
• Compaction within a segment.

– Segment size chosen so that transfer time is much greater than
access time: 512 KB or 1 MB.

21 3 4 5 6

Segment Summary
• Each segment maintains a summary that

identifies each piece of information in a
segment - for each data block, it has the
file number, file version, inode number and
the block number of that block in the file.

• Cross checking the file’s version,
inode/indirect block and the segment
summary helps identify dead data.

Segment Cleaning
• Four policy issues:

– When should segment cleaner execute?
• Continuously, only when needed, etc.

– How many segments to clean at a time?
• Must find enough free space to result in one clean segment.

– Which segments to clean?
• Lowest utilized, oldest, etc.

– What re-orderings to perform when rewriting a segment?
• Group files in same directory, group temporally, group by age, etc.

• First two ignored, do not seem to be important.
– Starts cleaning when #segments drop below a watermark.

Cleans a few tens of segments at a time.
• Third and fourth are important.

Selecting segments - Write Cost
• Write cost is the ratio of total work done to useful work

done.

(3 + 2 + 1)/1

Write Cost

Clean Segments with least u

8

Simulation
• Fixed number of 4 KB files. No reading, just rewriting.
• Two access patterns:

– Uniform (no cleaner reordering)
– Hot-and-cold (cleaner reordering based on age)

• One group: contains 10% of the files with 90% chance of being
selected.

• Other group: contains 90% of the files with 10% chance of being
selected.

• Simulator runs till all clean segments exhausted, then
runs cleaner until a threshold of clean segments
reached.

• Cleaner always chooses least-utilized segments,
reorders blocks by age

Results, Introspection

• How to clean such that reordering by age is efficient?
• How to get a bimodal distribution for u so that average u

is low?

Idea
• Want to have greater amount of free space in circulation

so that segment cleaner finds free space whenever it
wants

• Free space in “old” segments is getting locked for a
longer time under ‘least u’ policy

• ‘Running Average Oldness’ of data easy to maintain in
the segment summary (actually the paper uses current
time - the time of most recent modification)

Results

Lowest utilization

Max benefit

Crash Recovery

• Two-pronged approach:
– Checkpoint: a complete, self-contained record

of a consistent state of the file system.
– Roll-forward: recover operations performed

after the checkpoint by re-doing the
operations after the checkpoint (only the
recent log needs to be accessed).

Performance – small files

• Small-file performance under Sprite LFS and SunOS: create 10,000 1K files, then
read back in same order, then delete.

– The logging approach provides an order of magnitude speedup for creation and deletion.
– In SunOS, disk 85% saturated, so faster processors will not help much. In Sprite LFS, disk

only 17% saturated, while the CPU was 100% utilized.

9

Performance - large files

• Large-file performance under Sprite LFS and SunOS: create a 100-MB file with sequential writes,
read back sequentially, write 100 MB randomly, read 100 MB randomly, finally read sequentially.

Segment Utilization (in practice)

Disk Usage

• Block types marked with ‘*’ have equivalent data structures in Unix FFS.

Disk Usage

• Block types marked with ‘*’ have equivalent data structures in Unix FFS.

Increased
usage of Inode
map due to the
regular cleaning

of segments

Conclusion
• Soft Updates allow writes to go out of order,

cash on disk drivers’ write scheduling. Nice way
of breaking dependencies by book keeping.

• Soft Updates – disk image consistent, immediate
recovery.

• LFS uses disk as a log, disk write bandwidth
utilized efficiently. Nice cost benefit based
segment cleaning.

• LFS – a very good alternative if the workload is
small file intensive.

• LFS – recovery by checkpoint + roll forward of
the recent log.

Unaddressed Issues

• LFS - how to maintain file locality while
cleaning segments?

