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Blast from the Past: circa 1995

I NOW : Networks of Workstations
I Aggregate DRAM
I Muliple CPUs
I Network as I/O backplane

I Cluster Computing : Commodity
supercomputing

I Gigabit network interconnects
I Ethernet, ARP, IP ... solved problem. Right?
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Down with IP!

I Cluster computing
I Few (thousands of) hosts
I Simple, small topology
I Network packet = function call

I IP solves a different problem
I Global inter network
I Planetary scale, multi-hop
I IP data generally interactive, or bulk
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Down with IP!

I Baked into the kernel
I Death by contention (Ethernet)
I Death by congestion (ARP)
I Death by latency (IP)
I Death by processing overhead (Kernel)

I ATM to the rescue
I Circuit switched
I Low maximum overhead (high minimum overhead)

I ATM: 10%

I Ethernet: 30%

I Supported by kernels ... as IP over ATM. D’oh!
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Look Ma, no kernel!

I By the power of: µ-Kernel
I sans user-space FS
I sans user-space VM
I sans all but user-space networking

U-Net: A User-Level Network Interface for Parallel

and Distributed Computing

Thorsten von Eicken, Anindya Basu, Vineet Buch and Werner Vogels, Cornell University
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Back to the Future

I Zero-copy, true Zero-copy
I Shared buffer (IO-Lite ’99)

I Multiplex Network Interface (Exokernel ’95)

I Input and Output queues (SEDA ’01)

I Save on context switches (L4 ’97)
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U-Net is born

I User app makes syscall, creates endpoint

I Setup (ATM-like) channels to demultiplex
I Get a user-kernel (or user-hardware) shared

buffer
I Compose data in buffer, send scatter-gather

descriptor to Tx queue
I Trap to kernel
I For receive, poll or register upcall
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U-Net, fantastic! Fore, not so much.
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Long live U-Net

I Restricts user application
I U-Net with buffer management ’97. Welsh et al.

I Scalable?
I Connections
I Nodes
I Interfaces

I Reinvent the wheel
I Naming, Routing, Discovery
I Reliability, QoS
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U-Net meets Amdahl, Moore

I Does it really matter?
I Cross-machine RPC: 0.6% – 5.3%
I Are nodes still slower than networks?

I LRPC saves the world
I Exploit machine-local RPC (> 94%)
I Reduce message copies
I Reduce scheduling lag

Lightweight Remote Procedure Call

Brian Bershad, Thomas Anderson, Edward Lazowska, Henry Levy, UWash
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Copy-happy RPC

callRPC()

Check Protection

Message Transfer

Interpret Dispatch

Schedule

Run Service

Check Protection

Message Transfer

Schedule

Client Kernel Server

I Stub generation

I Buffer Overhead

I Context Switch × 2

I Scheduling × 2
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LRPC. Or perhaps just, PC

callRPC()

Check Protection

Copy to Stack

Copy to Stack

Client Kernel

Run Service

No scheduling
required, just
switch.
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Context Switch be Gone

I Optimization for multiprocessors
I Cache contexts on idle processor
I Instead of context switch, run cached proc.
I Saves on TLB misses, cache misses etc

I No pessimization for remote calls
I Fallback to real RPC
I for complex local calls too
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Proof by Numbers
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Under the rug

I Memory management costs
I Allocate A-stack at bind time

I Resource migration

I Server control of degree of concurrency
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