
Faster!

Presenter: Saikat Guha

Cornell University

CS 614, Fall 2005

Faster! CS 614, Fall 2005



Blast from the Past: circa 1995

I NOW : Networks of Workstations
I Aggregate DRAM
I Muliple CPUs
I Network as I/O backplane

I Cluster Computing : Commodity
supercomputing

I Gigabit network interconnects
I Ethernet, ARP, IP ... solved problem. Right?

Faster! CS 614, Fall 2005



Down with IP!

I Cluster computing
I Few (thousands of) hosts
I Simple, small topology
I Network packet = function call

I IP solves a different problem
I Global inter network
I Planetary scale, multi-hop
I IP data generally interactive, or bulk

Faster! CS 614, Fall 2005



Down with IP!

I Baked into the kernel
I Death by contention (Ethernet)
I Death by congestion (ARP)
I Death by latency (IP)
I Death by processing overhead (Kernel)

I ATM to the rescue
I Circuit switched
I Low maximum overhead (high minimum overhead)

I ATM: 10%

I Ethernet: 30%

I Supported by kernels ... as IP over ATM. D’oh!

Faster! CS 614, Fall 2005



Look Ma, no kernel!

I By the power of: µ-Kernel
I sans user-space FS
I sans user-space VM
I sans all but user-space networking

U-Net: A User-Level Network Interface for Parallel

and Distributed Computing

Thorsten von Eicken, Anindya Basu, Vineet Buch and Werner Vogels, Cornell University

Faster! CS 614, Fall 2005



Back to the Future

I Zero-copy, true Zero-copy
I Shared buffer (IO-Lite ’99)

I Multiplex Network Interface (Exokernel ’95)

I Input and Output queues (SEDA ’01)

I Save on context switches (L4 ’97)

Faster! CS 614, Fall 2005



U-Net is born

I User app makes syscall, creates endpoint

I Setup (ATM-like) channels to demultiplex
I Get a user-kernel (or user-hardware) shared

buffer
I Compose data in buffer, send scatter-gather

descriptor to Tx queue
I Trap to kernel
I For receive, poll or register upcall

Faster! CS 614, Fall 2005



U-Net, fantastic! Fore, not so much.

Faster! CS 614, Fall 2005



Long live U-Net

I Restricts user application
I U-Net with buffer management ’97. Welsh et al.

I Scalable?
I Connections
I Nodes
I Interfaces

I Reinvent the wheel
I Naming, Routing, Discovery
I Reliability, QoS

Faster! CS 614, Fall 2005



U-Net meets Amdahl, Moore

I Does it really matter?
I Cross-machine RPC: 0.6% – 5.3%
I Are nodes still slower than networks?

I LRPC saves the world
I Exploit machine-local RPC (> 94%)
I Reduce message copies
I Reduce scheduling lag

Lightweight Remote Procedure Call

Brian Bershad, Thomas Anderson, Edward Lazowska, Henry Levy, UWash

Faster! CS 614, Fall 2005



Copy-happy RPC

callRPC()

Check Protection

Message Transfer

Interpret Dispatch

Schedule

Run Service

Check Protection

Message Transfer

Schedule

Client Kernel Server

I Stub generation

I Buffer Overhead

I Context Switch × 2

I Scheduling × 2
Faster! CS 614, Fall 2005



LRPC. Or perhaps just, PC

callRPC()

Check Protection

Copy to Stack

Copy to Stack

Client Kernel

Run Service

No scheduling
required, just
switch.

Faster! CS 614, Fall 2005



Context Switch be Gone

I Optimization for multiprocessors
I Cache contexts on idle processor
I Instead of context switch, run cached proc.
I Saves on TLB misses, cache misses etc

I No pessimization for remote calls
I Fallback to real RPC
I for complex local calls too

Faster! CS 614, Fall 2005



Proof by Numbers

Faster! CS 614, Fall 2005



Under the rug

I Memory management costs
I Allocate A-stack at bind time

I Resource migration

I Server control of degree of concurrency

Faster! CS 614, Fall 2005


