Practical Replication

The Dangers of Replication and a Solution
(SIGMOD’ 96)

The Costs and Limits of Availability for Replicated
Services (sosp’01)

Presented by: K. Vikram, Cornell University

Why Replicater

Availability

o Can access resource even if some replicas are
Inaccessible

Performance

o Can choose the replica that gives high
performance (eg. closest)

Data Model

Fixed set of objects

Fixed number of nodes
o Each has a replica of all objects

No hotspots

Inserts, Deletes — Updates

Reads ignored

Transmission and Processing delays ignored

Dimensions

Eager vs. Lazy

Group
o Update anywhere

Master
o Only the primary

copy can be updated O O

Comparison

Table 1: A taxonomy of replication strategies contrast-
Ing propagation strategy (eager or lazy) with the owner-
ship strategy (master or group).

Propagation

VS. Eager
Ownership
Group N transactions one transaction

N object owners N object owners
Master N transactions one transaction

one object owner one object owner
Two Tier N+1 transactions, one object owner

tentative local updates, eager base updates

Fager Replication

Update all replicas at once
Serializable Execution
Anomalies converted to waits/deadlocks

Disadvantages

o Reduced (update) performance
o Increased response times

o Not appropriate for mobile nodes

Waits/Deadlocks in Eager Replication

Disconnected nodes stall updates
o Quorum/cluster enhanced update availability

Updates may still fail due to deadlocks

Walt Rate: tps? x Action Time x (Actions x Nodes)?3

2 x DB_Size

Deadlock Rate: TPS? x Action_Time
4 x DB_Size?

Waits/Deadlocks in Eager Replication

Can we salvage anything?
Assume DB increases In size

TPS2 x Action_Time x Actions® x Nodes

4 x DB_Size?

Perform replica updates concurrently
o Growth rate would be quadratic

Lazy Replication

Asynchronously propagate updates
Improves response time

Disadvantages

o Stale versions

o Reconcile conflicting transactions

o Scaleup Pitfall (cubic increase)

o System Delusion (inconsistent beyond repair)

Lazy Group Replication

Use of timestamps for reconciliation

o Objects have update timestamps
o Updates have new value + old object timestamp

Reconciliation Rate: TPs2 x Action_Time x (Actions x Nodes)?

..) 2xDB Si
Cubic increase still bad 1 ERoSE
Collisions when disconnected

Disconnect_Time x (TPS x Actions x Nodes)?

DB_Size

Lazy Master Replication

Each object has an owner
To update, send an RPC to owner

After owner commits, source broadcasts the
replica updates

Not appropriate for mobile applications

No reconciliations, but we may have deadlock
Rate: (TPS x Nodes)? x Action_Time x Actions5

4 x DB_Size?2

Simple Replication doesn’t work

“Transactional update-anywhere-anytime-
anyway”
Most replication schemes are unstable

o Lazy, Eager, Object Master, Unrestricted Lazy
Master, Group

Non-linear growth in node updates
o Group and Lazy Replication (N?)

High deadlock or reconciliation rates

Solution: Restricted form of replication
o Twe ler Replication

Non-transactional replication schemes

Abandon serializability, adopt convergence

If connected, all nodes eventually reach the
same replicated state after exchanging
updates

Suffers from the lost update problem
Using commutative updates helps
Global serializabllity still desirable

An 1deal scheme should have

Avallability and Scaleabillity
Mobility

Serializablility

Convergence

Probable Candidates

Eager and Lazy Master
a No reconciliation, no delusion

Problems
o What if master is not accessible
o Too many deadlocks

How do we work around them?

Two-Tier Replication

Base Nodes
o Always connected (owns most objects)

Mobile Nodes
o Usually disconnected (originates tentative Xns)
o Keeps two versions: local & best known master

Two-Tier Replication

Two types of transactions

o Base (several base + at most one
connected naale node)

o Tentative (future base transaction)
Mobile — Base

o Propose tentative update transactions
o Databases synchronized

Two-Tier Replication

Tentative Transaction might fail
2 Acceptance Criterion

Originating node Is informed on failure

Similar to reconciliation but
o Master is always converged

o Originating nodes need to contact just some base
node

Lazy Replication w/o System Delusion

Analysis

Deadlock rate is N2

Reconciliation rate Is zero If transactions
commute

Differences between results of tentative and
pase transaction needs application specific
nandling

To Conclude

Lazy-group schemes simply convert
deadlocks to reconciliations

Lazy-master is better but still bad

Neither allow disconnected mobile nodes to
update

Solution:

o Use semantic tricks (timestamps + commutativity)
o Twe ter replication scheme

0 Best of eager master rmeplication and local update

Availability 1s the new bottleneck

Too much focus on performance
Local availability + network availability
Caching and Replication

Consistency vs. Availabllity

Optimistic Concurrency

Continuous Consistency

Availability depends on

o Consistency level, protocol used for consistency,
faillure characteristics of the network

Continuous Consistency

Generalize the binary decision between
o Strong Consistency
o Optimistic Consistency

Specify exact consistency required based on
o Client, network and service characteristics

Continuous Consistency

Applications specify maximum distance from
strong consistency

Exposes consistency vs. availability tradeoff
Quantify Consistency and Availability

Help system developers decide on how to
replicate

o Given availability requirements
Self-tuning of availability

The TACT Consistency Model

Replicas locally buffer a maximum number of
writes before requiring remote
communication

Updates are modeled as procedures with
application specific merge routines

Update carries application-specific weight
Updates are either tentative or committed

Specifying Consistency

Numerical Error
2 Maximum weight of writes not seen by a replica

Order Error

o Maximum weight of writes that have not
established final commit order (tentative writes)

Staleness

2 Maximum time between an update and its final
accept

Example

Site A Site B

Data Store Data Store
Updates Seen: Updates Seen:
WI1W?2 W1W3W4
NE = 2 (from W3, W4) NE =1 (from W2)
OE=0 OE =2 (from W3, W4)

(Assume Serialization Order = W1 W2 W3 W4)

System Model

Model replica failures as singleton network
partitions

Assume failures are symmetric
Processing and network delays ignored

Submitted client accesses
o Failed, rejected or accepted

Avall . = accepted/submitted
= AVallnetwork X AVallservice

Replication

Service Availability

Workload

o Trace of timestamped accesses
o Accesses that reach a replica
Faultload

o Trace of timestamped fault events
o Fault events divide a run into intervals

Bounds on Availability

Avall_.i.e < F (consistency, workload, faultload)
Upper bound on availability

Independent of consistency maintenance
protocol

Gives system designers a baseline to compare
their availability against

The Intuition

Consistency protocol answers questions
2 Which writes to accept/reject from clients

2 When/Where to propagate writes

o What is the serialization order

For upper bound, optimal answers are
needed

Exponentially many answers
o How do we make this tractable?

Methodology

Partition into Qe aNd Q. ine

Use pre-determined answers to Q i tO
construct a dominating algorithm

Given a workload and faultload, P, dominates
P, if

o P, achieves same/higher availability than P,

o P, achieves same/higher consistency than P,

Upper bound is the availability achieved by P
that dominates all protocols

Methodology

Some Iinputs to the dominating algorithm exist
which make it dominate all others

Search answers to Q.. t0 get an optimal
dominating algorithm

Maximize Q. 10 keep It tractable

Numerical Error and Staleness

Pushing writes to remote replicas always
helps

Thus, write propagation forms Q e
Write acceptance form Q,ine

Exhaustive search on possible sets of
accepted writes intractable

Aggressive write propagation allows a single
ogical write to represent all writes in a
partition — reduces search space

Reduces to a linear programming problem

Order Error

Aggressive write propagation coupled with
remote writes being applied only when they
can be committed

Write commitment depends on serialization
order

Domination relationship between serialization
orders

Three sets of serialization orders
o ALL, CAUSAL, CLUSTER

Example

Replica 1 receives W, and W, Replica 2
receives W; and W,

S =W,W,W,W, dominates S’ = W,W,W,W,
CAUSAL = W, precedes W, and W,
precedes W,

CLUSTER = W,W,W,W, or W, W, W, W,
CLUSTER > CAUSAL > ALL

Complexity

Exponential in worst case
Linear programming approximated

Serialization order enumeration was found
tractable in practice

Evaluation

Construct synthetic faultloads with varying
characteristics

Various consistency protocols

Write Commitment
a2 Primary Copy
Write is committed when it reaches the primary copy
2 Golding’s algorithm
Each write assigned a logical timestamp
Replica maintains a version vector
o Voting
Serialization order decided through a vote

Availability as a function ot numerical
error bound

0.985 T T T T T —]
Avail. Upper Bound /i/’f/
0.98 Aggr -+ -
Base %

0.975

0.97

Availability

0.965

0.96

0-955 1 1 1 1 1 1
0o 10 20 30 40 50 60 70

Numerical Error Bound

Pushing writes aggressively enhances availability

Availability as a function of order error

0.955

1
0.99 [)
! _
~. 0.985 F ot i
5 098 [T eeRTIIIITTT
s 0.975 | =" Avail.Upper Bound :
E ‘-. = 2 < (Voting, Aggr) ———+—
0.97 e (Voting, Base) Xooe T
O 965 i I". - T (Primary, Aggr) e Bl eee |
. /'!:g (Primary, Base) --&8--
0.96 Lo (Golding’s, Aggr) - -®--- _
T (Golding’s, Base) ---—-o---
0

5 10 15 20
Order Error Bound

* Primary copy has highest level of availability
» With aggressive order error bounding, voting achieves highest availability

Evaluation

Other faultloads yielded similar results

Theoretical bounds were reached because
o All partitions were singleton partitions

o For most failures, the system transitions from fully
connected to singleton partition and back

Faultloads without these properties cannot
reach the bounds

However, properties are somewhat
consistent with the Internet

Number of Messages (in millions)

Availability vs. Communication

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

T T T T T T T T T — 1.6 ! I I T T T T T T
: 2
I . o 14F e * —
\ Aggr = (Voting, Aggr) ———
-\ Enforced = 18 --->--- 1 c 12n (Voting, Base) < -
\ Enforced = 36 ----=---- = ' (Golding’s, Aggr) --------
i \‘\ Base @ | o 10 (Golding’s, Base) @ 7
L ; = 0.8 L (Primary, Aggr) ——=--]
m\ % ’ Ei"';% Heomeoan (Primary, Base). -—eg- 4
B ™~] KRN 4
B - > > x = > < L'E_ 0.6
i e 1 =2 o4ra .
- B s . é o E SRR oo ¥ o N i}
Boemeoh E Q2% ®— T g - e
1 L . I . . . : . 2) . __ EEI . .k_--_‘--é_......_-______'_x'f_‘______'—-;
6 12 18 24 30 36 42 48 54 60 66 0 é 4'- ;" "’Z" ;O - ’1‘“2‘"'};‘ 1@67‘?673 720

Numerical Error Bound

Order Error Bound

Achieving maximum service availability with a relaxed consistency model can

Entail increased communication overhead

Ettects of Replication Scale

1 L] L] L] L] L] L] _L GQQS
0.998 | B nag f
0.996 Galiiiy Y— -] 0.985 }
> 0.994 h > 0.98
= e = 0975 }F y
@ 0.992 B | E N
I= SIMO0_10, NE = 250 —— = o097} i SIMO_10, NE = 250 ——
< 0.99 = SIMO_10, NE=10 ---#--- E SIMD_10, NE =0 ---¢---
T #gIM1_00, NE = 250 e 0.965 / SIM1_00.NE =250 - o
n.o8s | SN 00, NE=0 —m] - SIM1_ 00, NE=0 B
SIM5 @0, NE = 250 --m-- 0.96 SIM5_00, NE = 250 --® -
0086 F SIM5_00, NE=0 --a--] 0.955 SIM5_00,NE=0 --&--
0.984 L L L 1 L Ly 0.95 L L L L L 1
1 2 3 4 5 B 7 B 1 2 3 4 5 B 7 B
Mumber of Replicas Mumber of Replicas

There is typically an optimal number of replicas

Conclusion

Simple optimizations to existing consistency
protocols can greatly improve availability

Voting and primary copy achieve best
availability

Additional replicas are not always useful

Higher availability can be achieved only by
relaxing consistency

