
Practical Replication

The Dangers of Replication and a Solution
(SIGMOD’96)
The Costs and Limits of Availability for Replicated
Services (SOSP’01)

Presented by: K. Vikram, Cornell University

Why Replicate?
� Availability� Can access resource even if some replicas are

inaccessible

� Performance� Can choose the replica that gives high
performance (eg. closest)

Data Model
� Fixed set of objects
� Fixed number of nodes� Each has a replica of all objects

� No hotspots
� Inserts, Deletes → Updates

� Reads ignored
� Transmission and Processing delays ignored

Dimensions
� Eager vs. Lazy

� Group� Update anywhere

� Master� Only the primary
copy can be updated

Comparison

Eager Replication
� Update all replicas at once
� Serializable Execution
� Anomalies converted to waits/deadlocks
� Disadvantages� Reduced (update) performance� Increased response times� Not appropriate for mobile nodes

Waits/Deadlocks in Eager Replication
� Disconnected nodes stall updates� Quorum/cluster enhanced update availability

� Updates may still fail due to deadlocks
� Wait Rate:

� Deadlock Rate:

TPS2 × Action_Time × (Actions × Nodes)3

2 × DB_Size

TPS2 × Action_Time × Actions5 × Nodes3

4 × DB_Size2

BAD!

Waits/Deadlocks in Eager Replication
� Can we salvage anything?
� Assume DB increases in size

� Perform replica updates concurrently� Growth rate would be quadratic

TPS2 × Action_Time × Actions5 × Nodes

4 × DB_Size2

Lazy Replication
� Asynchronously propagate updates
� Improves response time
� Disadvantages� Stale versions� Reconcile conflicting transactions� Scaleup Pitfall (cubic increase)� System Delusion (inconsistent beyond repair)

Lazy Group Replication
� Use of timestamps for reconciliation� Objects have update timestamps� Updates have new value + old object timestamp

� Reconciliation Rate:
� Cubic increase still bad
� Collisions when disconnected

TPS2 × Action_Time × (Actions × Nodes)3

2 × DB_Size

Disconnect_Time × (TPS × Actions × Nodes)2

DB_Size

Lazy Master Replication
� Each object has an owner
� To update, send an RPC to owner
� After owner commits, source broadcasts the

replica updates
� Not appropriate for mobile applications
� No reconciliations, but we may have deadlock
� Rate: (TPS × Nodes)2 × Action_Time × Actions5

4 × DB_Size2

Simple Replication doesn’t work
� “Transactional update-anywhere-anytime-

anyway”
� Most replication schemes are unstable� Lazy, Eager, Object Master, Unrestricted Lazy

Master, Group

� Non-linear growth in node updates� Group and Lazy Replication (N2)

� High deadlock or reconciliation rates
� Solution: Restricted form of replication� Two- Tier Replication

Non-transactional replication schemes
� Abandon serializability, adopt convergence
� If connected, all nodes eventually reach the

same replicated state after exchanging
updates
� Suffers from the lost update problem
� Using commutative updates helps
� Global serializability still desirable

An ideal scheme should have
� Availability and Scaleability
� Mobility
� Serializability
� Convergence

Probable Candidates
� Eager and Lazy Master� No reconciliation, no delusion

� Problems� What if master is not accessible� Too many deadlocks

� How do we work around them?

Two-Tier Replication
� Base Nodes� Always connected (owns most objects)

� Mobile Nodes� Usually disconnected (originates tentative Xns)� Keeps two versions: local & best known master

Two-Tier Replication
� Two types of transactions� Base (several base + at most one

connected- mobile node)� Tentative (future base transaction)

� Mobile → Base� Propose tentative update transactions� Databases synchronized

Two-Tier Replication
� Tentative Transaction might fail� Acceptance Criterion

� Originating node is informed on failure
� Similar to reconciliation but� Master is always converged� Originating nodes need to contact just some base

node

� Lazy Replication w/o System Delusion

Analysis
� Deadlock rate is N2

� Reconciliation rate is zero if transactions
commute
� Differences between results of tentative and

base transaction needs application specific
handling

To Conclude
� Lazy-group schemes simply convert

deadlocks to reconciliations
� Lazy-master is better but still bad
� Neither allow disconnected mobile nodes to

update
� Solution:� Use semantic tricks (timestamps + commutativity)� Two- tier replication scheme� Best of eager- master- replication and local update

Availability is the new bottleneck
� Too much focus on performance
� Local availability + network availability
� Caching and Replication
� Consistency vs. Availability
� Optimistic Concurrency
� Continuous Consistency
� Availability depends on� Consistency level, protocol used for consistency,

failure characteristics of the network

Continuous Consistency
� Generalize the binary decision between� Strong Consistency� Optimistic Consistency

� Specify exact consistency required based on� Client, network and service characteristics

Continuous Consistency
� Applications specify maximum distance from

strong consistency
� Exposes consistency vs. availability tradeoff
� Quantify Consistency and Availability
� Help system developers decide on how to

replicate � Given availability requirements

� Self-tuning of availability

The TACT Consistency Model
� Replicas locally buffer a maximum number of

writes before requiring remote
communication
� Updates are modeled as procedures with

application specific merge routines
� Update carries application-specific weight
� Updates are either tentative or committed

Specifying Consistency
� Numerical Error� Maximum weight of writes not seen by a replica

� Order Error� Maximum weight of writes that have not
established final commit order (tentative writes)

� Staleness� Maximum time between an update and its final
accept

Example

System Model
� Model replica failures as singleton network

partitions
� Assume failures are symmetric
� Processing and network delays ignored
� Submitted client accesses� Failed, rejected or accepted

� Availclient = accepted/submitted
= Availnetwork × Availservice

Replication

Service Availability
� Workload� Trace of timestamped accesses� Accesses that reach a replica

� Faultload� Trace of timestamped fault events� Fault events divide a run into intervals

Bounds on Availability
� Availservice � F (consistency, workload, faultload)

� Upper bound on availability
� Independent of consistency maintenance

protocol
� Gives system designers a baseline to compare

their availability against

The Intuition
� Consistency protocol answers questions� Which writes to accept/reject from clients� When/Where to propagate writes� What is the serialization order

� For upper bound, optimal answers are
needed
� Exponentially many answers� How do we make this tractable?

Methodology
� Partition into Qoffline and Qonline

� Use pre-determined answers to Qoffline to
construct a dominating algorithm
� Given a workload and faultload, P1 dominates

P2 if� P1 achieves same/higher availability than P2� P2 achieves same/higher consistency than P2

� Upper bound is the availability achieved by P
that dominates all protocols

Methodology
� Some inputs to the dominating algorithm exist

which make it dominate all others
� Search answers to Qonline to get an optimal

dominating algorithm
� Maximize Qoffline to keep it tractable

Numerical Error and Staleness
� Pushing writes to remote replicas always

helps
� Thus, write propagation forms Qoffline

� Write acceptance form Qonline

� Exhaustive search on possible sets of
accepted writes intractable
� Aggressive write propagation allows a single

logical write to represent all writes in a
partition – reduces search space
� Reduces to a linear programming problem

Order Error
� Aggressive write propagation coupled with

remote writes being applied only when they
can be committed
� Write commitment depends on serialization

order
� Domination relationship between serialization

orders
� Three sets of serialization orders� ALL, CAUSAL, CLUSTER

Example
� Replica 1 receives W1 and W2, Replica 2

receives W3 and W4

� S = W1W2W3W4 dominates S’ = W2W1W3W4

� CAUSAL = W1 precedes W2 and W3
precedes W4

� CLUSTER = W1W2W3W4 or W1W2W3W4

� CLUSTER > CAUSAL > ALL

Complexity
� Exponential in worst case
� Linear programming approximated
� Serialization order enumeration was found

tractable in practice

Evaluation
� Construct synthetic faultloads with varying

characteristics� Various consistency protocols� Write Commitment� Primary Copy� Write is committed when it reaches the primary copy� Golding’s algorithm� Each write assigned a logical timestamp� Replica maintains a version vector� Voting� Serialization order decided through a vote

Availability as a function of numerical
error bound

Pushing writes aggressively enhances availability

Availability as a function of order error

• Primary copy has highest level of availability
• With aggressive order error bounding, voting achieves highest availability

Evaluation
� Other faultloads yielded similar results
� Theoretical bounds were reached because� All partitions were singleton partitions� For most failures, the system transitions from fully

connected to singleton partition and back

� Faultloads without these properties cannot
reach the bounds
� However, properties are somewhat

consistent with the Internet

Availability vs. Communication

Achieving maximum service availability with a relaxed consistency model can
Entail increased communication overhead

Effects of Replication Scale

There is typically an optimal number of replicas

Conclusion
� Simple optimizations to existing consistency

protocols can greatly improve availability
� Voting and primary copy achieve best

availability
� Additional replicas are not always useful
� Higher availability can be achieved only by

relaxing consistency

