
Consensus
Fischer, Lynch and Paterson ’85

Lamport ’01

Presented by K. Vikram
Cornell University

To me, consensus seems to be the process of
abandoning all beliefs, principles, values and
policies. So it is something in which no one
believes and to which no one objects.
Thatcher, Margaret
1925 British Stateswoman Prime Minister (1979-90)

Qui tacet consentire videtur
(He that is silent is thought to consent)

Let’s Agree
• Core of many distributed algorithms

– transaction commit, group membership
• Unreliability poses challenge

– process crash, network partitioning,
garbled messages, Byzantine

• Asynchrony
– unpredictable delays

More Motivation
• With decentralization and replication,
we need to coordinate nodes
– data consistency
– update propagation
– mutual exclusion
– consistent global states
– group membership, communication
– event ordering

Non-blocking Commit
• To install or not to install
• Each process votes a YES or a NO
• COMMIT if all votes are YES
• ABORT otherwise

Non-blocking Commit
• Properties:
• Termination

– Every good process eventually decides
• Agreement

– No two processes decide differently
• Obligation

– decision value is either COMMIT or ABORT
– COMMIT ⇒ all processes voted YES
– all processes vote YES and none are bad ⇒COMMIT

Surprisingly
A completely asynchronous protocol for
consensus
cannot tolerate even a single
unannounced process death

• forget Byzantine failures
• reliable messages

The Consensus Problem
• Each process has Initial Value in {0,1}
• Each non-faulty process decides on a
value

• All non-faulty processes choose the
same value

• The decision is eventually made
• Non-triviality

System Model
• Processes modeled as automata*
• Communicate through messages
• Receive, process and send
• Atomic Broadcast available

Formalize Consensus
• Asynchronous system of N processes
• Process p has xp and yp ∈ {b,0,1}
• Internal State

– x_p, y_p, internal storage, pc
• Initial State
• p has a transition function
• Message: (p,m)
• Message System

The Message System
• send(p,m)
• receive(p)
• Non-deterministic receive
• All messages are eventually received
• Configuration, Initial Configuration
• Step, Event, Schedule, Run
• Commutativity

A Quick Lemma
C

C2

C3

C1

σ1

σ2 σ1

σ2

If σ1 and σ2are disjoint

Partially Correct Protocol
• Decision Value
• ⇒ Accessible configurations have one
decision value

• ⇒ ∀ v ∈ {0,1} ∃ C : C has decision value v
• Nonfaulty Process
• Admissible Run
• Deciding Run

Totally Correct Protocol
• In spite of one fault
• Partially Correct
• Every admissible run is a deciding run
• Some admissible run is not deciding

The Intuition
• Show possibility of protocol being
indecisive forever

• Show
– P could be indecisive initially
– P can always avoid entering a decision state

Some more definitions
• V is the set of decision values of
reachable configurations

• Valency of a configuration
– Univalent if |V| = 1
– Bivalent if |V| = 2
– V ≠ �

Initial Bivalent Configuration
• Lemma: P has a bivalent initial
configuration

• P has 0-valent + 1-valent initial
configurations

• Consider adjacent initial configs
• Consider an admissible deciding run that
doesn’t involve the differing process p

• A bivalent initial config is inevitable

0
1

0

0

0

0

0
1

1

1

1

1

C0
C1

σ σ

≈p
≈p

Stay Bivalent
• C is a bivalent configuration of P
• Let e = (p,m) be applicable to C
• C : set of configs reachable from C
without applying e

• D = e(C) =
{e(E) | E ∈ C and e is applicable to E}

• D contains a bivalent configuration

Proof (reductio ad absurdum)
• e is applicable to every E ∈ C
• Assume for contradiction

– ∀ D ∈ D, D is univalent
• Consider E0, E1 reachable from C (existence?)
• If Ei ∈ C, let Fi = e(Ei) ∈ D
• else Ei is reachable from some Fi ∈ D

C

C

D

e

bivalent

Proof (continued)
• Either Ei → Fi or Fi → Ei
• Fi is i-valent
• D contains both 0-valent and 1-valent
configurations

Proof (continued)
• Neighbor configurations

– reachable in a single step
• C0 and C1 are neighbors

Proof (continued)
C0

C1

D1

D0

e’

e’ e

e
C

D

neighbors

e = (p,m)
e’ = (p’,m’)

If p’ ≠ p

Proof (continued)
• If p’ = p
• Consider any finite deciding run from C0where p takes no steps
• Suppose σ is the schedule, A = σ(C0)
• σ applicable to Di (Quick Lemma)
• A → E0, A → E1
• ⇒ A is bivalent ⇒⇐

Proof (continued)
C0

C1

D0

e’

e’

e e
D1

A

E1E0

e
e

σ
σ

σ

How to avoid deciding…
• Given these lemmas, we show how to
construct an admissible nondeciding run

• Ensure admissibility via
– a queue of processes
– messages in buffer ordered by sent time

• The first process receives its earliest
message

How to avoid deciding…
• Ensure nondecision as follows:
• Begin execution at C0, a bivalent configuration
• At any bivalent configuration C

– if p heads the process queue
– m is p’s earliest message in the buffer
– e = (p,m)

• ∃ bivalent C’ reachable from C, where e
is the last event applied

All hope is not lost…
• Consensus possible

– if no process dies during protocol execution
– majority are nonfaulty

• Each process broadcasts its number
• Listens for messages from ⌈(N+1)/2⌉ - 1
• Create G
• Create G+ (transitive closure of G)
• Compute initial clique of G+

Conclusion
• Cannot distinguish among

– Crashed Process
– Very Slow Process
– Slow Communication

• Problem of modeling
• Relax restrictions

– Asynchrony
– Probabilistic guarantees

Paxos – a case study
• Safety requirements for consensus

– Only a proposed value can be chosen
– Only a single value is chosen
– A process learns that the value is chosen
only after it has been chosen

• Eventually (Liveness)
– A proposed value is chosen
– If chosen, a process learns its value

The Setup
• Three Roles

– Proposer
– Acceptor
– Learner

• Asynchronous, non-Byzantine model
– Agents may delay, fail or restart
– Messages can be delayed, duplicated or lost
but not corrupted

Choosing a Value
• An acceptor must choose the first
proposal it receives

• A value is chosen when majority
acceptors accept it

Choosing a Value
• Acceptors accept multiple proposals,
distinguishing them by a proposal
number

• A value is chosen when a single proposal
with that value is accepted by majority

Choosing a Value
• Allow multiple proposals to be chosen, if
they have the same value

• If a proposal with value v is chosen,
every higher-numbered proposal chosen
has value v

• … accepted by any acceptor …
• … issued by any proposer …

Choosing a Value
• Proposers maintain the invariant:
• For any v and n, if a proposal with v and
n is issued, ∃ set S of majority
acceptors such that either
– no acceptor in S accepted any proposal < n
– v is the value of the highest-numbered
proposal (< n) accepted by S

Proposer’s Job
• Choose a proposal number n and send a
prepare request to a set of majority
acceptors asking for:
– accepted proposal with highest number < n
– promise not to accept proposals < n

• Depending on the response, it sends an
accept request with a self-chosen value,
or the value of the highest proposal

• Can abort anytime, without reusing n

Acceptor’s Job
• Receive prepare or accept requests
• A response is not required for safety
• A response is allowed

– always for a prepare request
– for an accept request, without violating an
earlier promise

Progress in Paxos
• Two proposers can keep making prepare
requests and getting each other’s
accept requests ignored

• Solution: use a distinguished proposer
• Liveness still not guaranteed

Conclusions
• Simple mechanism
• Processes allowed to restart
• No liveness guarantee

Finally
• Comments/Criticisms
• Questions?
• Thank You!

