
Perspectives on Threaded and 
Asynchronous Programming

Oliver Kennedy
Advanced Systems

Lecture 2



Threaded vs Asynchronous

CPUs are faster than most hardware

Programs need to wait for hardware

How does a program continue processing 
while waiting on hardware?



Poll and Process

Continually poll the hardware for readiness

Extremely inefficient 



Threads

Multiple threads processing data at once

While one thread waits, the rest continue

Benefits

Intuitive, Multiprocessor Support, 
Modular code can’t break the system

Drawbacks

Inefficient, Synchronization issues



Asynchronous Programming

One thread processes events

Hardware readiness treated as an event

Benefits

Efficient, Linear Execution, No Starvation

Drawbacks

Unintuitive, Problems with Modular Code, 
Limited Concurrency, Tasks need to be short



Threads in Interactive Systems

Programmers use threads a lot

A lot of modern problems have to do with 
threads

What can we learn from this?

What do programmers use threads for?

What mistakes are made with threads?

How can threads be made more efficient?



Cedar and GVX

A case study on two OSes

Cedar and GVX use the Mesa language’s 
thread system

Mesa supports standard primitives

... and a strict priority scheduler



And they found...

A bird’s eye view: The Profiler

Three classes of threads

Eternal Threads

Worker Threads

Transient Threads

Cedar vs GVX

Free and loose vs Small and Efficient



Thread Paradigms

Defer Work

Pumps/Slack Processes

Sleepers/One Shots

Deadlock Avoiders

Task Rejuvenation

Serializers

Concurrency Exploiters

Encapsulated Forks



Thread Problems-What works

Sleepers, One shots, Pumps, Work-Deferrers 
all implemented properly

Yet these require little inter-thread 
interaction

Concurrency Exploiters were new at the time

Work has been done since



Problems-Time Constraints

High priority slack-processes can be hard 
to write for use with low priority threads

Yield and a strict priority scheduler don’t 
play nice

Solution: Add a YieldButNotToMe primitive



Problems-Priorities

Synchronization primitives cause priority 
inversions in strict-priority schedulers

Solution 1: High priority threads donate 
cycles to threads holding locks they need

Solution 2: A high priority thread that 
periodically grants a time slice to a thread 
chosen at random



Problems-Misunderstandings

Mesa implements locks in an unusual way

Programmers write code that might be 
correct in some circumstances

Bugs introduced this way are hard to track 
(the code looks right)



Problems-Treating the Symptom

A common problem

Ex: Fixing a wait without a corresponding 
notify by adding a timeout to the wait

Introduces delays and possibly bugs



Problems-Changing Hardware

Magic Numbers

Timeouts and pause lengths based on 
one processor become invalid when a 
faster processor comes out

Memory Ordering

Much code assumes strict memory 
ordering



Problems-Library Implementation

Notify, Yield, and Scheduling

Strict priority scheduling sucks

Time quantum

(not a problem, but a consideration)



Future Work

Analyze more systems!

Come up with new scheduling techniques

Keep analyzing known code



SEDA

The internet is big... really big

Loads are getting bigger

Dynamic content becoming prevalent

Services need to adapt to these loads



But how can we adapt?

Can’t we use threads?

What if we only used so many threads?

Weren’t you talking about some 
asynchronous nonsense earlier?

How about a mix?



SEDA

A means of building scalable web services

Has to support concurrency

Has to be easy to program

Has to let the application manage load

Has to tune itself



Stages

Any task can be broken down

SEDA breaks tasks down into stages

A stage has an input queue

A full web-service is multiple stages 
networked together



Stages

Event Queue

Thread Pool

Automatic tuning

Controller

Feedback

Event Handler



Stages



Why stages?

Allows for isolation

Fine grained tuning

Easier debugging 



Self-Tuning

Each stage has an associated controller

Thread Pool Size

More threads = More concurrency (up to 
a point)

Request Batching

Cache Locality, Task Aggregation



Sandstorm

Java based implementation of SEDA

Simple memory management

Provides APIs

Queue and stage management

Profiling/debugging



Haboob/GnutellaServer

An implementation of common web services 
on top of Sandstorm

Both performed admirably

Haboob (despite being written in Java) had 
better performance characteristics than 
Apache under high loads.



Haboob vs Apache vs Flash



Threads vs Hybrids

The age old conflict

Monolithic vs Microprogramming

Threads expose more

It’s 12 years later, the tech is here

SEDA is more elegant

But it’s in Java...



Any Questions?


