Storage & File Systems
3 February, 2004 William Josephson

Top vicw of a 36 GBI, 10,000 REM, 13M SCSL
server hard disk, with its top cover removed,
Niste Lthe heighl of the drive and the 10 stacked plamers.
(The TBM Ullrastor 362X}

A Typical Disk

Logically organized as array of sectors

Each sector protected by ECC

Platters divided in concentric tracks

Tracks organized into cylinders

Key performance characteristics:

CAV on older disks

Newer disks multi-zoned

Rotational delay

Seek time

Head /track and cylinder switch
Sustained transfer rate

Scheduling (zero-latency xfers)

Spindle .
Track €
Sector =
Cylinder g

Storage Technology Trends

e Disk trends in the last decade
— Head switch time little changed
— 2.5x improvement in seek time
— 3x improvement in rotational speed
— 10x improvement in bandwidth
— =2 10? denser
— ~ 103 cheaper

— Compare: the memory wall between processor & core

e Other mass storage technologies becoming popular, too

— e.g. flash in small devices

Dealing with Disaster

e A typical modern disk has
— MTBF of =~ 1.2M hours

— Unrecoverable ECC errors on order of 1 in 101°

e Hailure modes
— Manufacturing defects (holes in the film, etc.)
— Magnetic domains decay/flip (thermodynamics!)
— Head crashes (physical/thermal shock, contamination)

— ECC errors due to partial writes (esp. ATA disks)

The Unix Filesystem

Filesystem consists of a (fixed) number of blocks
Basic unit of organization is the i-node
User data stored as a sequence of bytes in data blocks

Directories are just special files containing index nodes

— Directories map path components to i-node numbers

Ken’s filesystem was slow and vulnerable to failures

— For instance, allocated blocks from a free list on disk

The BSD Fast File System

e CSRG addressed performance and reliability concerns
— Increased the block size and introduced fragments

— Improved allocation and layout policies

x Allocate file blocks in “rotationally optimal” manner
x Allocate file blocks in one cylinder group if possible to
reduce fragmentation

— Further work includes softupdates, clusters, traxtents, etc.

e Most operations still require multiple disk 1/Os

Softupdates: Motivation

e Metadata updates are a headache:

— Performance, integrity, security, & availability problems

e Traditional filesystems either:
— Compromise on safety (e.g. Ext2, FAT)
— Make extensive use of synchronous updates (e.g. FFS)
— Use special-purpose hardware (e.g. WAFL)
— Use shadow-paging or write-ahead logging

e Softupdates allow write back caches to delay writes safely

— Low-cost sequencing of fine-grained updates

Softupdates: Operational Overview

e Goal: better performance through fine-grain dependency tracking

e Softupdates allow for safe use of write-back caches for metadata:
— Track depenedencies to present consistent view to client

— Ensure state on stable storage is also consistent

x May lose data not yet on disk, but disk image not corrupt

— Dependency information consulted when flushing a dirty block

x Aging problems avoided as new dependencies are never

added to existing update sequences

Implementing Softupdates

e Maintain update list for each pointer in cache
— File system operations add updates to each pointer affected
— Updates can be rolled backwards or forwards as needed

— Blocks are locked during a roll-back

e Simple block-based ordering is insufficient
— Cycles must still be broken with synchronous writes
— Some blocks may “starve” waiting for dependencies

— Block granularity introduces false sharing

Softupdates: Cyclic Dependencies

e Block level granularity of writes can introduce dependencies

Inode Block Directory Block Inode Block Directory Block
Inode #:4 c - R0 = Innde#ﬂi—ﬁﬁh#db
lnode #5 Inode #5

< B #5 = < B #5 =
lnode #86 lnode #6
Inode #7 < G#7 > Inode #7 <C#7 =

(a) Original Organization

Inode Block

|node #d

(b) Create File A

Cirectory Block

-

lnode #5

< A#d =

I

lnode #6

< - #0O =

lnode #7

= CHT =

(c) Remowe File B

Shaded regions indicate free metadata structures

10

Softupdates for FFS

e Structural changes: block (de)allocation, link addition/removal

e F'ile system semantics essentially unchanged

— Synchronous metadata updates do not imply synchronous
semantics (last write typically asynchronous)

— Softupdates allow caching metadata with same write-back
strategies as for file data
e With cheap update sequencing, can afford stronger guarantees
— Can therefore safely mount filesystem immediately

— Background fsck can reclaim leaked blocks

11

Softupdates: Performance, I

e Compare create and delete throughput as a function of file size

Threughpud in M Bl's=z]

12

10

for conventional, no order, and softupdates

" Mo Order —— o '
Sof-Updates —w— 5
Convanfonal --—%—
» .
- x'.. —
.‘I
e
P et AN] .] .]]
i | 18 =t | 258 1024 095
Fil= Ziz= {in KE]

Create Microbenchmark

12

Thmughpul in dless=c)

4000

3500

A000

2500

2000

1500

1000

S00

I M :Eh:la'l —l—I
SottUpdates —w—0
Convenfonal -—k—-

e
Mo # = ':"n—--\._ﬂ..—'ﬂ
_:,,:.-—"' - gy
$- e s - -
< 15 G 255 1024
Fil= Siza {in KE)

Delete Microbenchmark

Thmoughpat Gn M Blsac]

Softupdates: Performance, II

e Read performance improved by delayed writes

— Better indirect block placement

e Softupdates coalesces metadata updates in the create benchmark

11

10 -

I M lbh:l-u' —l—I I
Sof-Updates —w—
Convandional --—%—

4 18 84 258
Fila Siza {in KE]

Read throughput (MB/s)

1024

4098

13

Mumbear of Whi=x

120000 — ———
Mo Order ——
Sofi-Updates —-+—
Convenional -—%—-
woon - Y .
|
30000 - ' .
\
goon |- i -
*
40000 - J
20000 .
f

1 4 18 LY 258 1024 4098
Fila Siza {in KE)

Total Disk Writes for Create Benchmark

Softupdates: Performance, 111

In macrobenchmarks, softupdates also performs well

Postmark — small, ephemeral file workload (mail server):

— No order: 165 tps; Softupdates: 170tps; Conventional 45 tps
On a real mailserver: softupdates offers 70% fewer writes

fsck: virtually instantaneous on 4.5G file system vs.

conventional fsck time of almost three minutes

14

The Log-structured File System: Motivation

e CPU speed increases faster than disk speed — I/O bottleneck
e Aggressive caching can improve read performance

e Relative write performance suffers
— Can’t naively cache writes and still maintain safety
— Many filesystems use synchronous writes for metadata

— So metadata dominates for small files typical for Unix

15

LES: Operational Overview

e Goal: improve throughput through better write scheduling

e Write performance drives filesystem design:
— Treat the disk as a circular log
— Write all data and metadata blocks together in the log
— Attempt to keep large free extents

x Batch writes in “segments”

x Segment size chosen on the basis of disk geometry

16

LFS: On-Disk Data Structures & Crash Recovery

e Data, index nodes, and other metadata all written to the log

— Inodes are not written at fixed locations

e Fixed check-point regions record inode map locations

— Inode maps are aggresively cached to avoid disk seeks

e Log is regularly checkpointed
— Flush active segment and inode maps

— Serialize dependent operations with additional log records

e On restart, either truncate or roll the log forward; no fsck

17

LFS: The Cleaner

e Logically, the log is infinite, but the disk is finite

— Garbage collect (“clean”) old segments

e Cleaner can either “thread” or copy and compact the log

— LF'S uses a hybrid approach, copying entire segments

e Compare cleaning policies on the basis of write cost

— Average time disk is busy per byte of new data:

read 4+ write live + write new

wCe = ;
write new

18

LE'S: Cleaner Policies

When to clean?

— At night, in the background, during idle periods, on demand

How much to clean?

— Fixed number of segments or bytes

Which segments to clean?

— Poorly utilized segments, well-chosen cost /benefit metric

How to reorganize cleaned segments?

— Group for locality, group by age, expected write cost

19

LES: Cleaner Policies, 11

e Hot and cold segments not equal = bimodal behavior

— free space in cold segment more valuable

benefit free space generated x age of data (1 — u) x age
cost cost 1+u
r]Frac:.uan of sv:gments y Fra cu on D‘f sn:gm El'ltb | | |
G.m-? E E D‘m-? ——a ;,.-
0.006 ™ N 0.006 - }’\\
0:005 | i
: . - .0005 - -
i i HOt-and-cold : :
(L0304 \ LW - f .
I_I_I'}!?E .] r— 00003 - \ _LE& Cost-Benefi
0002 F 0002 -
{0001 - i _TF& Graady
00K -2 ; : i e (.000 —=t— . : preceones -
5.:—53::—.5 s Segment utilization
Greedy Cost-Benefit

20

LES: Performance, I

e Small file comparison of LF'S and SunOS UFS in simulation
— LF'S offers better throughput with lower overhead
— Implies that LF'S will scale better given technology trends

— Somewhat artificial (e.g. re-read files in order written)

Tmw

Filesfsec (preducied)

160 17 Il] B
140 |- % ---------- - 325 |

12‘} ——— LI . 45{] B P T S B

L . et - 375
E" . - ﬁim ------------------ g e [——
£ 2 Erid
&0 {-- ﬁ 7] e %
ap |- 150 g
RNl N .
0 j— {) e it
Lwelew SlUn4d 27aHUund 4Tsung
ammo swE R ity AL B oonoao
LAy L T adlSss 080 00 AR ddw Gib il [

{a))

21

LES: Performance, 11

e Large file comparison of LFS and SunOS UF'S in simulation
e LFS performs well in simulation for common workloads

e LLI'S does not handle some corner cases as well
— High disk utilization and/or little idle time

— Read-heavy workloads; sequential read after random write

—

kilobytes/sec %/ Spriie LES | SunG3

SO I FET

70 ﬁ% - e
. e, ,-Fféf

e
Fal W0 B AAFARH o mo mem oo e oo

-%[:“:b . ‘{d e ———— - ?_ - (::};d ----------—--------_._........._..._...._:m.
40K} ﬁf i N 2 e N

30K} % S ;L R INCIRTISER e -

200 |- . 1 L. i- f:f 1)
e . . E240 R I € it H I

106 % _ L 42 Eﬁ%%

0
Write Read Write Read Reread
Sequential Random Sequential

22

Some Perspective on Filesystems

e We read about LF'S and Softupdates
— Both seek to improve performance while maintaining safety

— Both are targeted at general purpose workloads

e Recent research has focused on:
— Application-specific workloads (e.g. hummingbird)
— Backup (e.g. WAFL, Venti+Fossil, several start-ups)

x Tape is obsolete — small, slow, sequential access, expensive

— Finding data in secondary and tertiary storage:

x Regulatory and policy changes mandate long-term archival
+ Massive amounts of raw data (e.g. MGH’s NMR unit)

23

