
Storage & File Systems
3 February, 2004 William Josephson

1



A Typical Disk
• Logically organized as array of sectors

– Each sector protected by ECC

• Platters divided in concentric tracks

– CAV on older disks

– Newer disks multi-zoned

• Tracks organized into cylinders

• Key performance characteristics:

– Rotational delay

– Seek time

– Head/track and cylinder switch

– Sustained transfer rate

– Scheduling (zero-latency xfers)

2



Storage Technology Trends

• Disk trends in the last decade

– Head switch time little changed

– 2.5x improvement in seek time

– 3x improvement in rotational speed

– 10x improvement in bandwidth

– ≈ 102 denser

– ≈ 103 cheaper

– Compare: the memory wall between processor & core

• Other mass storage technologies becoming popular, too

– e.g. flash in small devices

3



Dealing with Disaster

• A typical modern disk has

– MTBF of ≈ 1.2M hours

– Unrecoverable ECC errors on order of 1 in 1015

• Failure modes

– Manufacturing defects (holes in the film, etc.)

– Magnetic domains decay/flip (thermodynamics!)

– Head crashes (physical/thermal shock, contamination)

– ECC errors due to partial writes (esp. ATA disks)

4



The Unix Filesystem

• Filesystem consists of a (fixed) number of blocks

• Basic unit of organization is the i-node

• User data stored as a sequence of bytes in data blocks

• Directories are just special files containing index nodes

– Directories map path components to i-node numbers

• Ken’s filesystem was slow and vulnerable to failures

– For instance, allocated blocks from a free list on disk

5



The BSD Fast File System

• CSRG addressed performance and reliability concerns

– Increased the block size and introduced fragments

– Improved allocation and layout policies
∗ Allocate file blocks in “rotationally optimal” manner
∗ Allocate file blocks in one cylinder group if possible to

reduce fragmentation

– Further work includes softupdates, clusters, traxtents, etc.

• Most operations still require multiple disk I/Os

6



Softupdates: Motivation

• Metadata updates are a headache:

– Performance, integrity, security, & availability problems

• Traditional filesystems either:

– Compromise on safety (e.g. Ext2, FAT)

– Make extensive use of synchronous updates (e.g. FFS)

– Use special-purpose hardware (e.g. WAFL)

– Use shadow-paging or write-ahead logging

• Softupdates allow write back caches to delay writes safely

– Low-cost sequencing of fine-grained updates

7



Softupdates: Operational Overview

• Goal: better performance through fine-grain dependency tracking

• Softupdates allow for safe use of write-back caches for metadata:

– Track depenedencies to present consistent view to client

– Ensure state on stable storage is also consistent

∗ May lose data not yet on disk, but disk image not corrupt

– Dependency information consulted when flushing a dirty block

∗ Aging problems avoided as new dependencies are never
added to existing update sequences

8



Implementing Softupdates

• Maintain update list for each pointer in cache

– File system operations add updates to each pointer affected

– Updates can be rolled backwards or forwards as needed

– Blocks are locked during a roll-back

• Simple block-based ordering is insufficient

– Cycles must still be broken with synchronous writes

– Some blocks may “starve” waiting for dependencies

– Block granularity introduces false sharing

9



Softupdates: Cyclic Dependencies

• Block level granularity of writes can introduce dependencies

Shaded regions indicate free metadata structures

10



Softupdates for FFS

• Structural changes: block (de)allocation, link addition/removal

• File system semantics essentially unchanged

– Synchronous metadata updates do not imply synchronous
semantics (last write typically asynchronous)

– Softupdates allow caching metadata with same write-back
strategies as for file data

• With cheap update sequencing, can afford stronger guarantees

– Can therefore safely mount filesystem immediately

– Background fsck can reclaim leaked blocks

11



Softupdates: Performance, I

• Compare create and delete throughput as a function of file size
for conventional, no order, and softupdates

Create Microbenchmark Delete Microbenchmark

12



Softupdates: Performance, II

• Read performance improved by delayed writes

– Better indirect block placement

• Softupdates coalesces metadata updates in the create benchmark

Read throughput (MB/s) Total Disk Writes for Create Benchmark

13



Softupdates: Performance, III

• In macrobenchmarks, softupdates also performs well

• Postmark – small, ephemeral file workload (mail server):

– No order: 165 tps; Softupdates: 170tps; Conventional 45 tps

• On a real mailserver: softupdates offers 70% fewer writes

• fsck: virtually instantaneous on 4.5G file system vs.
conventional fsck time of almost three minutes

14



The Log-structured File System: Motivation

• CPU speed increases faster than disk speed – I/O bottleneck

• Aggressive caching can improve read performance

• Relative write performance suffers

– Can’t naively cache writes and still maintain safety

– Many filesystems use synchronous writes for metadata

– So metadata dominates for small files typical for Unix

15



LFS: Operational Overview

• Goal: improve throughput through better write scheduling

• Write performance drives filesystem design:

– Treat the disk as a circular log

– Write all data and metadata blocks together in the log

– Attempt to keep large free extents
∗ Batch writes in “segments”
∗ Segment size chosen on the basis of disk geometry

16



LFS: On-Disk Data Structures & Crash Recovery

• Data, index nodes, and other metadata all written to the log

– Inodes are not written at fixed locations

• Fixed check-point regions record inode map locations

– Inode maps are aggresively cached to avoid disk seeks

• Log is regularly checkpointed

– Flush active segment and inode maps

– Serialize dependent operations with additional log records

• On restart, either truncate or roll the log forward; no fsck

17



LFS: The Cleaner

• Logically, the log is infinite, but the disk is finite

– Garbage collect (“clean”) old segments

• Cleaner can either “thread” or copy and compact the log

– LFS uses a hybrid approach, copying entire segments

• Compare cleaning policies on the basis of write cost

– Average time disk is busy per byte of new data:

wc =
read + write live + write new

write new

=
2

1 − u

18



LFS: Cleaner Policies

• When to clean?

– At night, in the background, during idle periods, on demand

• How much to clean?

– Fixed number of segments or bytes

• Which segments to clean?

– Poorly utilized segments, well-chosen cost/benefit metric

• How to reorganize cleaned segments?

– Group for locality, group by age, expected write cost

19



LFS: Cleaner Policies, II

• Hot and cold segments not equal ⇒ bimodal behavior

– free space in cold segment more valuable
benefit
cost

=
free space generated ∗ age of data

cost
=

(1 − u) ∗ age
1 + u

Greedy Cost-Benefit

20



LFS: Performance, I

• Small file comparison of LFS and SunOS UFS in simulation

– LFS offers better throughput with lower overhead

– Implies that LFS will scale better given technology trends

– Somewhat artificial (e.g. re-read files in order written)

21



LFS: Performance, II

• Large file comparison of LFS and SunOS UFS in simulation

• LFS performs well in simulation for common workloads

• LFS does not handle some corner cases as well

– High disk utilization and/or little idle time

– Read-heavy workloads; sequential read after random write

22



Some Perspective on Filesystems

• We read about LFS and Softupdates

– Both seek to improve performance while maintaining safety

– Both are targeted at general purpose workloads

• Recent research has focused on:

– Application-specific workloads (e.g. hummingbird)

– Backup (e.g. WAFL, Venti+Fossil, several start-ups)

∗ Tape is obsolete – small, slow, sequential access, expensive

– Finding data in secondary and tertiary storage:
∗ Regulatory and policy changes mandate long-term archival
∗ Massive amounts of raw data (e.g. MGH’s NMR unit)

23


