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Summary of First Paper

Epidemic Algorithms For Replicated Database Maintenance 
(Demers et al. Proc. of the Sixth ACM Symp. on Principles of 
Distributed Computing, August 1987)

Presents randomized, epidemic algorithms for distributing 
updates in a replicated database to approach consistency
Analyses performance of two random epidemic algorithms 
(anti-entropy and rumor mongering)
Implements algorithms in simulation and on Xerox Corporate 
Internet to measure rate of database consistency and network 
traffic
Emphasizes importance of spatial distributions for efficiency



Summary of Second Paper

• Astrolabe: A Robust and Scalable Technology For Distributed 
System Monitoring, Management, and Data Mining (Van Renesse 
et al.  ACM TOCS, May 2003)
– Describes the distributed hierarchical database system, Astrolabe
– Uses epidemic techniques to efficiently propagate through the hierarchy 

and achieve consistency
– Presents an SQL-like language for complicated aggregation of data
– Incorporates a certificate authority based security model



Problem:

• How do we replicate a database across 
many sites while maintaining consistency?
– Many different hosts may have write 

access to the database
– Underlying network is unreliable
– We want to avoid unnecessary network 

traffic



Two unsuccessful approaches:

• Each host responsible for propagating their 
updates directly to all other hosts

+ Updates propagated immediately
+ No redundant messages sent
- Each host must know full membership -- 
Difficult with churn
- Messages may be lost
- May saturate critical links
- Forces updating node to 

make O(n) connections
• Use primary site update
   + Simplifies update distribution
    -  Single point of failure/Bottleneck



An alternative approach:
Use peer-to-peer randomized 
algorithms to disseminate updates in 
the network like an epidemic

+ Does not require full knowledge 
of network at any single host

+ Works well with unreliable 
message delivery 

+ Updates spread rapidly as more 
sites become “infected”

- Harder to achieve consistency 
with randomized algorithm

- Reoccurring question: How do we 
avoid generating tremendous 
network traffic?



1. Direct mail - Each host sends all updates to every other 
host. Has same pros/cons of the first unsuccessful 
approach. Not epidemic.

2. Anti-entropy - Sites periodically contact other sites and 
reconcile database with them.

3. Rumor mongering - When a site encounters a new 
update, it begins to gossip it to random sites until the 
rumor becomes “cold” by some measurement (e.g. 
many sites contacted already knew rumor).

Epidemic Methods

The first paper describes three techniques for 
update propagation:



Anti-Entropy
Sites pick random partner and exchange database content 
and resolve differences

Operations referred to as “push”, “pull”, or “push-pull” 
depending on which direction updates flow

Expected time for update to propagate to n hosts using 
push is logarithmic: log2(n) + ln(n) + c (Pittel, 87)

push seems to be used more in practice (e.g. USENET) but 
pull will propagate updates more rapidly in settings where 
only a few sites initially do not have the update

To keep deleted entries from re-propagating through the 
network, Death Certificates must be distributed and stored



Compare Traffic
A naive anti-entropy algorithm exchanges entire databases to find 
differences, generating a prohibitive amount of “compare traffic”
Solutions:

1. Checksums 
- still exchanges entire databases when checksums differ)

2. Maintaining window of recent updates which are always 
exchanged. 
- use checksums to compare databases after applying 

recent updates
- Sensitive to choice of window size

3. Exchange updates in reverse chronological order until 
checksums agree

4. Other possibilities include recursive, hierarchical 
checksums of database or version vectors (e.g. Bayou)



Rumor Mongering
 (Complex Epidemics)

A node that hears about an update 
considers it a “hot rumor” 
Nodes spread hot rumors to other random 
nodes 
At some point nodes consider rumor cold 
and stop spreading it
Problem: Not all nodes may have heard 
rumor by the time it is considered cold.

Can be backed up with anti-entropy to achieve eventual 
consistency



Deciding When to Stop

We want to design an epidemic which 
minimizes:

1.  Residue, the ratio of nodes susceptible at the end of the 
epidemic

2.  Traffic 
3.  Delay until most sites know the rumor

The first and third of these desires are in conflict with the second



Two different stopping policies compared:
Simulations on 1000 nodes
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Pulling Rumors
In a system with enough update traffic, it might be worthwhile to pull 
rumors instead for lower residue:
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Motivation for Spatial Awareness

Clearinghouse name service

A translation database replicated on hundreds of servers on 
the Xerox Corporate Internet, a world wide network of 
thousands of hosts

Relied on anti-entropy with uniform host selection and direct 
mail to propagate updates

Found direct mailing was flooding the network but...

Even without direct mailing, anti-entropy would saturate key 
links



Spatial Distributions

Too much randomness seems unwise. We want 
nodes to infect nodes nearby them.
Uniform selection of gossiping partners 
undesirable. Critical links in the network will 
face large traffic.

In CIN, key transatlantic links would have 
80 conversations/round compared to the 
link average of 6 conversations/round 



Incorporating Distance

Sites select gossiping partners with probability determined by 
the distance rank of the nodes and a parameter a.
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Incorporating Distance (cont.)
Sites select gossiping partners with probability determined by the 
distance rank of the nodes and a parameter a with connection 
limit of 1:
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Incorporating Distance (cont.)

While it seems that spatial information is critical for network load 
balancing, it does mean consistency takes longer to reach outer 
nodes:
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We have not escaped the trade-off between 
efficiency and consistency



Rumor mongering sensitive to spatial parameters

Table 6. Simulation results for p?sh-pull rumor nwngrring. 
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The situation can become arbitrarily bad:

Rumors may become cold everywhere before reaching distant nodes



The epidemic system we just examined replicates the entire 
database at all nodes

Requires spatial distributions to efficiently spread information

Spatial locality interferes with the rate at which we achieve 
consistency

How does the systems scale as more more hosts (and updates) 
enter the system?

Perhaps we can achieve better performance by replicating only  
summaries of data and propagating updates in a hierarchical 
manner....

Summary of First Paper



Astrolabe
A hierarchical, scalable distributed data storage 

and mining system
Four design goals:
1. Scalable - Designed to be organized into hierarchical zones of close 
nodes. Data is summarized before moving between zones.

2. Flexible - Presents SQL-like code for aggregation functions. New 
functions may be added dynamically.

3. Robust - Hosts exchange information with a peer-to-peer epidemic 
algorithm resistant to host failures.

4. Secure - Certificate Authorities are used at each zone to control access to 
information and resources.



Turtles all the way down...
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Fig. 1. An example of a three-level Astrolabe zone tree. The top-level root zone has three child
zones. Each zone, including the leaf zones (the hosts), has an attribute list (called a MIB). Each
host runs an Astrolabe agent.

of seconds. Section 8 describe various related work, from which Astrolabe bor-
rows heavily. Section 9 concludes.

2. ASTROLABE OVERVIEW

Astrolabe gathers, disseminates and aggregates information about zones. A
zone is recursively defined to be either a host or a set of non-overlapping zones.
Zones are said to be non-overlapping if they do not have any hosts in common.
Thus, the structure of Astrolabe’s zones can be viewed as a tree. The leaves of
this tree represent the hosts (see Figure 1).

Each zone (except the root) has a local zone identifier, a string name unique
within the parent zone. A zone is globally identified by its zone name, which
is a string consisting of its path of zone identifiers from the root, separated by
slashes (e.g., “/USA/Cornell/pc3”).

Each host runs an Astrolabe agent. The zone hierarchy is implicitly speci-
fied when the system administrator initializes these agents with their names.
For example, the “/USA/Cornell/pc3” agent creates the “/”, “/USA”, and “/USA/
Cornell” zones if they did not exist already. Thus the zone hierarchy is formed
in a decentralized manner, but one ultimately determined by system adminis-
trators. As we will see, representatives from within the set of agents are elected
to take responsibility for running the gossip protocols that maintain these in-
ternal zones; if they fail or become unsuitable, the protocol will automatically
elect others to take their places. Associated with each zone is an attribute list,
which contains the information associated with the zone. Borrowing terminol-
ogy from SNMP [Stallings 1993], this attribute list is best understood as a form
of Management Information Base or MIB, although the information is certainly
not limited to traditional management information.

Unlike SNMP, the Astrolabe attributes are not directly writable, but gener-
ated by so-called aggregation functions. Each zone has a set of aggregation func-
tions that calculate the attributes for the zone’s MIB. An aggregation function

ACM Transactions on Computer Systems, Vol. 21, No. 2, May 2003.

Individual zones maintain a 
management information base 
(MIB). Leaf nodes maintain local 
host information in ‘virtual child 
zones’

Internal zones use aggregate 
function certificates to combine 
MIBs of their children into their 
MIB, and so forth, up to the root.

Smart Aggregation functions may propagate information through Astrolabe 
without replicating the entire database.



Aggregation -- The key to 
scalability

As more hosts are added to the system, and 
more information is stored, the number of 
updates and amount of data grows.

In order to scale, this data must be locally 
aggregated before being propagated 
through the network. 



Aggregation (cont.)

Aggregation Function Certificates contain 
information on how to collect and 
aggregate attributes of child zone MIBs into 
entries for inner zone MIBs

Programmed in SQL-like language
Contain information on how the AFC 
should be propagated through the 
hierarchy



Aggregation (cont.)
While computation and the inputs of an AFC may be complicated, it 
is important that their output is simple and scales. Sample AFC 
questions (taken from van Renesse, Birman, and Vogels’s 
presentation):

1. Which are the three lowest loaded hosts?

2. Which domains contain hosts with an out-of date virus 
database?

3. Do >30% of hosts measure elevated radiation?

4. Where is the nearest logging server?
5.

An invalid AFC question is something like Which hosts have an 
nethack.rc file? The result of this query increases with the 
number of hosts in the system. But we can be clever...



Aggregate Propagation

An AFC may output itself. Since parents generate their MIBs by 
evaluating AFCs found in their children, the AFC will propagate 
up the hierarchy, so long as it is signed by an authorized client or 
an ancestor zone (see Security below)

Children adopt new AFCs found in their ancestor zones

The propagation of AFCs relies on timely gossip consistency of 
ancestor zones



Robustness: Gossip

Each zone’s MIB contains a list of contact agents for the 
zone, aggregated arbitrarily or though some voting 
mechanism

Each agent periodically gossips for every zone for which it 
is a contact:

The agent picks a contact for another child zone and 
executes an anti-entropy protocol with them

The two agents push-pull to synchronize the contents of 
all child zone MIBs up to the root

The creator and time of creation of the MIBs recorded 
by the participating agents are exchanged to determine 
what records need to be updated.



More Robustness
Astrolabe must also be robust in the face of network churn

Agents remove MIBs when they are not updated by the 
representative within some timeout

Entire zones are removed after all their MIBs are removed
New machines and split trees must be integrated

Trees must find each other using local broadcast, or IP 
multicast, or using a list of relatives :(

The administrator is responsible for assigning spatial 
significant zone names and relative lists.

Perhaps some other technique is possible. Perhaps 
relative lists and spatial information could even be 
gossiped.

Not designed for churn--Astrolabe processes can run on stable 
hosts. Other hosts can use RPC to talk to them.



Security

Each zone has its own certificate authority:

Parent zones’ CAs sign the public zone keys of child zones

MIBs are signed with the private key of the corresponding 
zone when gossiped

Client certificates specifying capabilities and are signed by a 
CA of any ancestor zone

AFCs are signed by ancestor zones or valid children to 
determine trustworthiness



Security Issues

CAs must be well known and trustworthy. Compromising the CA 
for a zone lets a client write a client certificate for all descendent 
zones

Nodes can lie about their values. Contacts for a zone (who know 
the zone’s public/private keys) can lie about MIBs when gossiping. 
Depending on the election algorithm nodes can lie about their 
values in order to be elected as contacts. :)

Certificates are hard to revoke, and with appropriate certificates, 
a client may install potentially expensive AFCs.

What else?

Has hierarchical design introduced more tiers for failure?



Performance
For the data in Astrolabe to be timely, AFCs and MIBs must be 
propagated quickly. 

Higher branching factor = Faster propagation (fewer levels) and 
more overhead (more siblings mean more MIBs to gossip)

More representatives at each level = Faster propagation (more 
gossipers) but also more traffic

194 • R. van Renesse et al.
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gossip. Latency improves when the branching factor is increased, but doing so
also increases overhead.

For example, at 390,625 members and branching factor 5, there are 8 levels in
the tree. Thus each member has to maintain and gossip only 8 × 5 = 40 MIBs.
(Actually, since gossip messages do not include the MIBs of the destination
agent, the gossip message only contains 32 MIBs.) With a branching factor of
25, each member maintains and gossips 4 × 25 = 100 MIBs. In the limit (flat
gossip), each member would maintain and gossip an impractical 390, 625 MIBs.

With only one representative per zone, Astrolabe is highly sensitive to host
crashes. The protocols still work, as faulty representatives are detected and re-
placed automatically, but this detection and replacement takes time and leads
to significant delays in dissemination. Astrolabe is preferably configured with
more than one representative in each non-leaf zone. In Figure 7, we show the
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agent, the gossip message only contains 32 MIBs.) With a branching factor of
25, each member maintains and gossips 4 × 25 = 100 MIBs. In the limit (flat
gossip), each member would maintain and gossip an impractical 390, 625 MIBs.

With only one representative per zone, Astrolabe is highly sensitive to host
crashes. The protocols still work, as faulty representatives are detected and re-
placed automatically, but this detection and replacement takes time and leads
to significant delays in dissemination. Astrolabe is preferably configured with
more than one representative in each non-leaf zone. In Figure 7, we show the
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Performance/Robustness

In a gossiping protocol, the amount of gossip seems closely 
related to the robustness of the system.

Need to compare effects of message lost and host failure to other 
Astrolabe configurations to be sure.
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Fig. 8. The average number of rounds necessary to infect all participants, using different mes-
sage loss probabilities. In all these measurements, the branching factor is 25, and the number of
representatives is three.

average number of rounds necessary to infect all participants in an Astrolabe
tree with branching factor 25. In the experiments that produced these numbers,
we varied the number of representatives from one to three. Besides increasing
fault-tolerance, having more representatives also decreases the time to dissem-
inate new information. But three times as many representatives also leads to
three times as much load on the routers, so the advantages come at some cost.

In the next experiment, we determined the influence of message loss on the
dissemination latency. In this experiment we used, again, a branching factor
of 25, but this time we fixed the number of representatives at three. Gossip ex-
changes were allowed to fail with a certain independent probability loss, which
we varied from 0 to .15 (15%). As can be seen from the results in Figure 8, loss
does lead to slower dissemination, but, as in flat gossip [Van Renesse et al. 1998],
the amount of delay is surprisingly low. In a practical setting, we would proba-
bly observe dependent message loss due to faulty or overloaded routers and/or
network links, with more devastating effects. Nevertheless, because of the ran-
domized nature of the gossip protocol, updates can often propagate around
faulty components in the system. An example of such dependent message loss
is the presence of crashed hosts.

In this final simulated experiment, we stopped certain agents from gossiping
in order to investigate the effect of host crashes on Astrolabe. Again we used a
branching factor of 25, and three representatives. Message loss did not occur
this time, but each host was down with a probability that we varied from 0 to
.08 (8%). (With large numbers of members, doing so made the probability rather
high that all representatives for some zone are down. Astrolabe’s aggregation
functions will automatically assign new representatives in such cases.) As with
message loss, the effect of crashed hosts on latency is quite low (see Figure 9).

If we configure Astrolabe so that agents gossip once every two to five seconds,
as we normally do, we can see that updates propagate with latencies on the
order of tens of seconds.
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Fig. 9. The average number of rounds necessary to infect all participants, using different proba-
bilities of a host being down. In all these measurements, the branching factor is 25, and the number
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7.2 Load

We were also interested in the load on Astrolabe agents. We consider two kinds
of load: the number of received messages per round, and the number of sig-
nature checks that an agent has to perform per round. The average message
reception load is easily determined: on average, each agent receives one mes-
sage per round for each zone it represents. Thus, if there are k levels, an agent
that represents zones on each level with have the worst average load of k mes-
sages per second. Obviously, this load grows O(log n).

Due to randomization, it is possible that an agent receives more than one
message per round and per level. The variance of message load on an agent
is expected to grow O(log n): if a process is involved in k epidemics with inde-
pendently indentically distributed distributions, where each epidemic involves
the same number of participants (the branching factor of the Astrolabe tree),
then the variance is simply k times the variance of the load of each individual
epidemic.

In order to evaluate the load on Astrolabe agents experimentally, we used
three representatives per zone, but eliminated host and message omission fail-
ures (as these only serve to reduce load). We ran a simulation for 180 rounds
(fifteen minutes in case each round is five seconds), and measured the max-
imum number of messages received per round across all agents. The results
are shown in Figure 10. This figure perhaps reflects best the trade-off between
choosing small and large branching factors mentioned earlier.

If we simply checked all signatures in all messages that arrived, the overhead
of checking could become enormous. Since the number of MIBs in a message
grows as O(log n), the computational load would grow as O(log2 n). The larger
the branching factor, the higher this load, since larger branching factors result
in more MIBs per message, and can easily run into the thousands of signature
checks per round even for moderately sized populations.
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Performance/Node Load

A higher branching factor means fewer messages/host (because 
they are representatives for fewer zones):

Unfortunately, the greater number of MIBs means more signatures 
must be checked. Can be done in the background, but PKC is 
computationally expensive
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Fig. 10. The maximum load in terms of number of messages per round as a function of number of
participants and branching factor.

Rather than checking all signatures each time a message arrives, the agent
buffers all arriving MIBs without processing them until the start of a new round
of gossip. (Actually, only those MIBs that are new with respect to what the agent
already knows are buffered.) For each zone, the agent first checks the signature
on the most recent MIB, then on the second most recent MIB, and so forth, until
it finds a correct signature (usually the first time). The other versions of the
same MIB are then ignored. Thus we have artificially limited the computational
load to O(log n) without affecting the speed of gossip dissemination. In fact, the
maximum number of checks per round is at most k × (bf − 1), where k is the
number of levels and bf the branching factor. Moreover, the computational load
is approximately the same on all agents, that is, not worse on those agents that
represent many zones.

Another approach to limiting computational overhead is based on a
Byzantine voting approach. It removes almost all need for signature checking
[Minsky 2002].

7.3 Validating the Simulations

In order to verify the accuracy of our simulator, we performed experiments with
up to 126 Astrolabe agents on 63 hosts. For these experiments, we created the
topology of Figure 11 in the Emulab network testbed [White et al. 2002]. The
set-up consists of six LANs, each consisting of eight Compaq DNARD Sharks
(233 MHz StrongARM processor, 32 MB RAM, 10 Mbps Ethernet interface,
running NetBSD) connected to an Asante 8+2 10/100 Ethernet switch. (As
indicated in the figure, one of the Sharks was broken.) The set-up also
includes three routers, consisting of 600 MHz Intel Pentium III “Coppermine”
processors, each with 256 MB RAM and 4 10/100 Mbps Ethernet interfaces,
and running FreeBSD 4.0. All the routers’ Ethernet interfaces, as well as the
Asante switches, are connected to a Cisco 6509 switch, and then configured as
depicted in Figure 11.
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Experimental and Simulated 
Latency

Real: Simulated:

Are the previous measurements meaningful?
Compare time to propagate simple aggregate function through network:

Experimental results often slightly better than 
simulated (gossiping works better when not 
synchronized). Do we buy it? 



Conclusions and Lessons

Randomized, epidemic algorithms are a useful tool for building 
information systems resistant to faults

The spread of rumors, however, has scaling problems unless we 
organize the communication of hosts

Organization of hosts can, however, begin to slow the rate at which 
the system achieves consistency and introduce new points of failure 
(i.e. Certificate Authorities, zone representatives)

The key to epidemic algorithms then is not that they eliminate the 
problems of robustness versus efficiency, but that they provide us with 
many more points at which to tweak


