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ABSTRACT
As raw system and network performance continues to improve at

exponential rates, the utility of many services is increasingly lim-

ited by availability rather than performance. A key approach to

improving availability involves replicating the service across mul-

tiple, wide-area sites. However, replication introduces well-known

tradeo�s between service consistency and availability. Thus, this

paper explores the bene�ts of dynamically trading consistency

for availability using a continuous consistency model. In this

model, applications specify a maximum deviation from strong

consistency on a per-replica basis. In this paper, we: i) evalu-

ate availability of a prototype replication system running across

the Internet as a function of consistency level, consistency pro-

tocol, and failure characteristics, ii) demonstrate that simple op-

timizations to existing consistency protocols result in signi�cant

availability improvements (more than an order of magnitude in

some scenarios), iii) use our experience with these optimizations

to prove tight upper bounds on the availability of services, and iv)

show that maximizing availability typically entails remaining as

close to strong consistency as possible during times of good con-

nectivity, resulting in a communication versus availability trade-

o�.

1. INTRODUCTION
As raw system and network performance continues to im-

prove at exponential rates, the utility of many services is
limited by availability rather than performance [18]. Thus,
many researchers are turning their attention to architectures
that improve overall availability, for example in the context
of cluster web servers [14], cluster email servers [33] and soft-
ware RAID systems [6]. These studies all focus on the avail-
ability of a centralized service. However, given the pervasive
use of the Internet to access remote services, even 100% lo-
cal availability will not necessarily deliver high availability
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to end users. For example, one recent study shows that net-
work failures prevent client access to a centralized service
between 1.5-2% of the time [8].
Caching and replication are key approaches to improv-

ing the availability of Internet services in the face of such
network failures. Multiple replicas increase the probability
that a client will be able to access a service despite individ-
ual failures. Unfortunately, strict consistency requirements
can actually reduce the availability of a replicated service
relative to a centralized one because consistency protocols
often require synchronous access to a subset of replicas to
achieve a uniform view of write orderings. Thus, if any one
member of this required subset is unreachable, the entire
service can be rendered unavailable.
To address this limitation, optimistic consistency models

allow multiple updates to take place simultaneously at dif-
ferent replicas. A number of e�orts propose trading reduced
consistency for increased availability, including Bayou [31,
35], Ficus [29], Coda [21], Deno [7], TACT [36], Lazy Repli-
cation [24] and Fluid Replication [27]. While optimism can
dramatically increase availability, an unbounded rate of con-
icting updates can quickly leave the system in a \delu-
sional" state [17]. Thus, we explore the availability bene�ts
of a continuous consistency model. In such a model, ap-
plications specify a maximum distance from strong consis-
tency (where existing optimistic models leave this distance
unbounded). Decreasing consistency results in a correspond-
ing increase in overall availability. Thus, a continuous con-
sistency model exposes a tradeo� between consistency and
availability that can be dynamically varied based on chang-
ing network and service characteristics. For example, a ser-
vice might relax consistency to maintain 99.9% availability
in the face of reduced network reliability.
While availability is extensively studied at the extreme of

strong consistency [2, 4, 9, 11, 19, 23], there is compara-
tively little understanding of the impact on availability of
relaxed consistency models. This work is among the �rst
to quantify the availability of a replicated service running
across the wide area. Our prototype measures availabil-
ity while varying the consistency level, the protocol used
to enforce consistency, and the failure characteristics of the
underlying network. Our �ndings reveal the inherent and
continuous tradeo� between consistency and availability and
show that simple optimizations to existing consistency pro-
tocols can signi�cantly improve service availability. We hope
our results will provide a framework for system develop-
ers to determine the degree of replication, the placement of
replicas, and the consistency level required to achieve a tar-



get service availability. The long term goal of our work is
to enable services to tune their system availability as their
workload changes and as network reliability changes. In the
context of this goal, this paper makes the following speci�c
contributions:

� We implement a prototype replication infrastructure
and a variety of popular consistency protocols. Using
this prototype, we quantify service availability as a
function of network failure characteristics, consistency
level, and consistency protocol through both live wide-
area deployment and network emulation. We �nd that
existing consistency protocols are optimized for perfor-
mance rather than availability and can actually deliver
reduced availability when relaxing consistency. Simple
modi�cations to these protocols greatly improve avail-
ability.

� For relaxed consistency, we �nd that maximizing avail-
ability entails maintaining as strong a consistency level
as possible during times of full connectivity. This is re-
quired to build up a large \cushion" for the times when
failures prevent communication. The need to maintain
nearly strong consistency most of the time exposes an
interesting tradeo� between availability and communi-
cation in the face of a continuous consistency model.

� Based on our experience with improving the availabil-
ity of consistency protocols, we develop a theory to
compute tight upper bounds on service availability as a
function of network and end host failure characteristics
(faultload), workload, consistency level, and degree of
replication. This upper bound gives system designers
an idea of the best possible availability their service
can achieve, independent of the algorithms used to
maintain consistency and the aggressiveness of their
optimizations. We compare the availability charac-
teristics of our consistency protocols to the calculated
upper bound under a variety of consistency levels and
faultloads. We �nd that with our simple optimizations,
existing protocols can approach the availability upper
bound under current Internet failure scenarios (more
aggressive optimizations and even future knowledge is
required to reach the upper bound in the general case).

� We study the e�ects of the degree of replication and
the reliability of the underlying network on overall ser-
vice availability. Thus, we quantify the tradeo� be-
tween the desire to widely replicate a service to max-
imize availability (in the limit, placing a replica on
every client machine) and the desire to centralize a ser-
vice to minimize consistency overheads (in the limit,
updates would be applied to a single site and all client
accesses would go through that site).

The rest of this paper is organized as follows. Section 2
provides background and describes our continuous consis-
tency model. In Section 3, we describe our techniques for
systematically determining the availability upper bounds for
replicated services. Section 4 details our implementation
and measurement methodology. Section 5 presents availabil-
ity and upper bound results for replicated services under a
variety of conditions through actual wide-area deployment
and an emulation environment. Section 6 describes related
work and Section 7 presents our conclusions.

2. BACKGROUND AND SYSTEM MODEL

2.1 Background
While research and development e�orts typically focus on

improving the performance of computer systems, improving
overall service availability often receives relatively little at-
tention. Currently however, the proliferation of companies
that conduct signi�cant portions of their business online has
drawn increased interest to highly-available services. Thus,
even a 1% improvement in availability is signi�cant, cor-
responding to approximately 3.5 additional days of uptime
per year. Put another way, each 0.1% improvement in ser-
vice availability results in roughly 8 hours of additional up-
time per year, corresponding to approximately $1 million
in additional revenue for every $1 billion in annual revenue
conducted online. The cost of downtime can be even more
catastrophic in military and scienti�c scenarios (even when
considering di�erences in availability of 0.001%-0.0001%, 5-
50 minutes of additional uptime per year).
The general technique considered here of trading consis-

tency for availability is well understood [24]. Strong con-
sistency ensures that concurrent updates will not conict
but limits system availability, throughput, and the practical
degree of replication. Based on the observation that many
applications do not always require strong consistency, opti-
mistic consistency greatly improves system performance and
availability but does not limit the number or severity of con-
icting updates. Thus, application developers are forced to
make a binary decision between strong and optimistic con-
sistency models. At each of these two extremes, there is an
associated tradeo� between consistency, performance, and
availability. A number of e�orts [1, 22, 32, 36] argue for the
bene�ts of a continuous consistency model. Here, optimistic
and strong consistency are two extremes of a more gen-
eral spectrum enabling applications to dynamically specify
their availability/consistency requirements based on chang-
ing client, network, and service characteristics. A full dis-
cussion of the bene�ts and applicability of continuous con-
sistency is beyond the scope of this paper. For our purposes,
a continuous model allows a more complete exploration of
the problem space.
We focus our study on the TACT consistency model [36].

However, we believe our �ndings reveal inherent aspects of
the consistency versus availability tradeo� for a wide range
of underlying models. In general, TACT gradually reduces
the amount of required synchronous communication among
replicas in moving from strong to optimistic consistency. In-
tuitively, the model allows replicas to locally bu�er a maxi-
mum number of writes before requiring remote communica-
tion. TACT models updates as procedures with application-
speci�c merge routines [35]. Each update can optionally
carry an application-speci�c weight describing its impor-
tance. At any replica, updates can be in either a tentative or
committed state. Three per-replica metrics, Numerical Er-

ror, Order Error, and Staleness, specify system consistency.
Numerical error is the maximumweight of writes not seen by
a replica. Order error is the maximum weight of writes that
have not established their commit order at the local replica
(i.e., maximum weight of tentative writes in the local view).
Finally, staleness is the maximum amount of time before a
replica is guaranteed to observe a write accepted by a re-
mote replica. Setting all three metrics to zero corresponds
to strong consistency, while values of in�nity correspond to
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Figure 1: Example system state with corresponding nu-

merical and order error.

optimistic consistency.
To provide some intuition behind the metrics, consider

the application of TACT to a replicated airline reservation
system [36]. In this example, numerical error corresponds to
the maximum number of system-wide reservations that have
not been propagated to the local replica. Order error cor-
responds to the maximum number of tentative reservations
in a replica's local view (i.e., reservations that have not es-
tablished their �nal commit order and may have to be later
rolled back). Finally, staleness is an upper bound on elapsed
wall clock time before an update is propagated to all repli-
cas. Thus, roughly, numerical error bounds the maximum
rate of conicting reservations, order error bounds the rate
of false negatives (where a user acts upon the presence of ten-
tative reservations that are later rolled back), and staleness
guarantees the maximum elapsed time before a reservation
is seen system-wide (and hence can be con�rmed).
Figure 1 depicts a simple example scenario with two repli-

cas at sites A and B. In this example, replica A has accepted
updatesW1 andW2 and replica B has accepted updatesW3

and W4. Update W1 has been propagated from A to B. We
assume that the �nal serialization order of the four writes
is W1W2W3W4. Writes in shaded boxes are \committed"
(e.g., W1 at B), having established their �nal serialization
order at the local replica. In this simple example, the nu-
merical error at A is two because it has not seen two remote
updates W3 and W4. The order error at A is zero because
all local writes have established their �nal commit order.
At B on the other hand, the order error is two because W3

and W4 cannot be committed (in the assumed serialization
order) until W2 is received locally.

2.2 Assumptions and Methodology
One �rst step in carrying out a study on network service

availability is determining the precise de�nition of \availabil-
ity." Today, we lack a widely-accepted de�nition for service
availability, especially when the service is accessed over a
network. Storage vendors have performed ground-breaking
work in building highly available services. However, when
they describe systems with \four nines" (99.99%) of avail-
ability, they typically refer to the uptime of the hardware
and software. In a wide-area network setting however, a
service may be \available" in the sense that all components
are executing normally and the network connection is func-
tional. However, some subset of clients may be unable to

access the service as a result of failures in the network. Fur-
ther, the network may be executing properly but running so
slowly that individual requests take an unacceptable amount
of time to complete (worse, the de�nition of \unacceptable"
is entirely application and client speci�c). Finally, in the
case of replicated services, at least one replica may be ac-
cessible to all clients but some replicas may not be able to
proceed with individual requests because of consistency re-
quirements.
We model replica failures as singleton network partitions

because it is usually impractical to distinguish between re-
mote host failures and network failure or congestion. We as-
sume that failures are symmetric. Even though non-symmetric
behavior is common at the IP level [30], we believe our as-
sumption is a close approximation for reliable communica-
tion protocols, such as TCP. For reliability, these protocols
require acknowledgments on the reverse path; thus, IP-level
failures on either direction will result in TCP-level failures
in both directions. Note that we do not assume reachabil-
ity among hosts is transitive. We assume that the CPU
processing time and network delay is negligible compared
to the duration of time where network connectivity does
not change. Violating this assumption would only result in
loosening the availability upper bounds derived in Section 3.
Finally, TACT supports the notion of application-speci�c
consistency units (or conits) that determine the granularity
over which consistency is enforced [36], for example a single
ight, �rst class seats, coach seats, etc. For simplicity, we
assume a single conit in the system and that each write car-
ries unit numerical weight and order weight for that conit.
Extending our results to more general scenarios is straight-
forward.
In this study, we de�ne availability over submitted ac-

cesses from the client to the network service. Each access
is classi�ed as: i) a failed access if the request cannot reach
any replica because of network failures, ii) a rejected access

if it is received by some replica but its acceptance would
violate some consistency requirement, or iii) an accepted

access otherwise. From the client perspective, availabil-
ity is Availclient = accepted accesses=submitted accesses.
However, client availability (Availclient) is a�ected by two
factors: network availability (Availnetwork), the percent-
age of accesses that can reach a replica and service avail-
ability (Availservice), the percentage of accesses reaching
replicas that are actually accepted. Thus, Availclient =
Availnetwork � Availservice. Network availability is deter-
mined by replication scale, client population and Internet
reliability (for client to server communication), while service
availability is a�ected by replication scale, Internet reliabil-
ity (for server to server communication), consistency level
and the consistency maintenance protocol. Replication im-
proves network availability, but decreases service availability
under a �xed consistency level. Relaxing consistency helps
to improve service availability. In this paper, we quantify
availability using both service availability and client avail-
ability.
We investigate service availability using a workload and

faultload approach. A workload is a trace of timestamped
accesses, while a faultload is a trace of timestamped fault

events. A fault event is either a failure that divides an
existing network component into two components or a re-
covery that merges two existing components. The workload
only contains the accesses that actually reach a replica, and



thus implicitly encompasses Availnetwork. The number and
location of replicas are speci�ed as part of the faultload.
Fault events divide a run into intervals. By de�nition, net-
work connectivity does not change during an interval. This
workload and faultload approach has a number of advan-
tages over the traditional approach of analytically modeling
replicated systems [9, 11] because it can avoid assumptions
about access patterns, failure patterns, failure correlations
and network topology. However, we do assume that the
faultload observed by an application is not signi�cantly af-
fected by the application's own communication. We leave
the interaction of an application's communication pattern
with observed faultloads to future work.

3. DERIVING TIGHT AVAILABILITY UP-
PER BOUNDS

The principal result of this section is the ability to calcu-
late tight upper bounds on service availability as a function
of workload, faultload, and consistency. This upper bound
allows system designers to reason about the utility of di�er-
ent optimizations in light of the best availability that any
protocol can achieve. More precisely, we intend to derive
the following relationship between availability, consistency,
workload, and faultload:

Availservice � F(consistency; workload; faultload)

The function F returns the availability upper bound, which
is independent of the consistency maintenance protocol, and
demonstrates the inherent e�ects of consistency, workload
and faultload on availability. The availability achieved by
any system will be less than or equal to this upper bound.
The proofs for our derivation are available in a separate
technical report [39]; here, we concentrate on the intuition
behind the theory rather than the formal framework.

3.1 Overview
At a high level, any consistency maintenance protocol

must answer a number of questions to achieve a target level
of consistency among replicas. First, a protocol must deter-
mine which writes to accept (or reject) from clients. Greed-
ily accepting all writes that do not violate consistency re-
quirements is not always optimal as it could preclude the
acceptance of a larger number of writes in the future. Next,
a protocol must determine when and where to propagate
writes. Write propagation decreases numerical error but can
increase order error temporarily if the propagated write can-
not be locally committed. Finally, the protocol must decide
the serialization order|which writes to commit and in what
order. Di�erent serialization orders enable writes to be com-
mitted at di�erent rates, a�ecting the rate at which order
error can be reduced. We discuss these issues in more detail
below. For now, we divide these questions into two disjoint
sets: Qoffline is the set of questions with optimal answers
that can be pre-determined o�ine, while Qonline contains
all remaining questions whose optimal answers depend on
consistency level, workload, and faultload. To prove tight
upper bounds on the availability of a service, it is necessary
to search for the optimal answers to these questions. Of
course, the set of possible answers is exponential. Thus, a
key challenge is to make the search of the set of possible
answers tractable by proving that certain types of answers
will always result in better availability than others.

Using the pre-determined optimal answers to Qoffline, we
construct a dominating algorithm, which is also a consis-
tency protocol. The dominating algorithm is an abstract
algorithm not intended for implementation (though we ap-
ply some of these concepts to optimize existing algorithms in
Section 5). By de�nition, the dominating algorithm makes
strictly \better" decisions than other protocols for Qoffline.
The dominating algorithm does not specify the answer of
any question from Qonline, rather it takes some inputs that
specify these answers. For example, one input may specify
whether to accept or reject a particular write W . Obvi-
ously, such inputs will a�ect the behavior of the dominating
algorithm. For a given workload and faultload, we say that
a consistency protocol P1 dominates protocol P2, if i) P1

achieves the same or higher level of availability as P2 and ii)
P1 maintains the same or higher level of consistency as P2.
The upper bound is the availability achieved by the proto-
col P that dominates all protocols. If we take all potential
inputs of the dominating algorithm into account, we can see
that some inputs to the dominating algorithm exist such
that the dominating algorithm will dominate an arbitrary
consistency protocol. The upper bound is then obtained by
searching the set of possible inputs to the dominating algo-
rithm (i.e., the answers to Qonline).
The construct of the dominating algorithm does not nec-

essarily guarantee a tractable approach to calculating the
upper bound on availability. For example, in the extreme, a
trivial dominating algorithm may specify nothing (Qoffline

being empty) and take all answers from its input. Thus, the
key to making the computation of the upper bound tractable
is to i) maximize the set Qoffline and ii) optimize the search
for optimal answers to Qonline.
To provide a avor of our approach, we �rst sketch the

derivation for calculating upper bounds on system availabil-
ity as a function of numerical error and staleness (with or-
der error unbounded), assuming that reads are always ac-
cepted by a replica. We then present the results for calcu-
lating upper bounds on availability when all three metrics
are bounded. The potential for improving availability by
selectively rejecting reads is discussed elsewhere [39].

3.2 Availability Upper Bound as a Function of
Numerical Error and Staleness

Before we begin the derivation, it is important to note
that considering only numerical error and staleness greatly
simpli�es the problem and the dominating algorithm con-
cept is not strictly required. However, to prepare for the
general case, we still describe the approach using the gen-
eral framework.
A consistency protocol for numerical error and staleness

needs to answer questions regarding write propagation, such
as \when/where to propagate writes", and questions regard-
ing write acceptance, such as \whether to accept a particular
write". There are trivial optimal answers (i.e., propagating
writes whenever possible) to questions regarding write prop-
agation, since pushing writes to remote replicas always helps
to reduce numerical error and staleness. Thus, these ques-
tions form Qoffline in this case. Based on these answers, the
dominating algorithm uses aggressive write propagation: i)
whenever a replica accepts a write, it pushes the write to all
reachable replicas immediately, ii) whenever a recovery event
merges two network components, all replicas immediately
propagate unseen writes to all reachable replicas. Here we



would like to emphasize that aggressive write propagation is
not practical nor necessarily intended for implementation, it
is just a concept used to derive the best availability a consis-
tency protocol can potentially achieve. Section 5 shows the
delivered availability for real protocols not using aggressive
write propagation relative to the calculated upper bound.
Questions regarding write acceptance do not have o�ine

optimal answers and thus belong to Qonline. Numerical er-
ror and staleness constrain the set of writes that can be
accepted, which in turn, limits availability. To �nd the
availability upper bound, we must perform an exhaustive
search of all possible sets of accepted writes with the goal
of maximizing availability while ensuring that numerical er-
ror and staleness bounds are not violated. However, a naive
enumeration will incur exponential complexity in terms of
the number of received writes. Properties of aggressive write
propagation allow us to optimize our search by using a single
logical write to represent all writes accepted by a partition
during an interval. We can then \simulate" the execution
of the dominating algorithm for a given faultload as follows.
We maintain n write logs, one for each replica. For each
partitionm in intervalk, the simulator creates a variable
writesk;m representing the total number of writes accepted
by partitionm during intervalk. The \simulator" then at-
taches this variable to the logs corresponding to the replicas
in partitionm, which means that all replicas in partitionm
see all such writes at the end of the interval. Next, at the
beginning of an interval, the simulator updates all logs ac-
cording to aggressive write propagation rules. To ensure
that numerical error is properly maintained on replicai, the
total number of writes accepted by the system but not seen
by replicai must be smaller than the numerical error bound
on replicai:X

fwritesk;mjk � current interval index and

writesk;m =2 replicai's write logg � boundNE

Staleness can be similarly incorporated into the theory by
setting some of the above variables to zero. For example,
if a variable writesk;m is not in replicai's write log and it
is accepted before the acceptance time allowed by replicai's
staleness bound, it must be zero. To preserve the tightness
of the bounds for staleness, an interval is split in two when
the allowed acceptance time falls in the middle of the inter-
val. Using this technique, the allowed acceptance time will
always fall on interval boundaries [39].
The workload requires that each variable writesk;m be

smaller than the number of writes submitted to partitionm
during intervalk:

writesk;m � number of writes submitted

to partitionm during intervalk

The above inequalities for all (replica, interval) pairs com-
pose a system of linear constraints for all writesk;m. Hence,
maximizing availability is equivalent to maximizing the tar-
get
P

writesk;m under the above constraints (assuming that
reads are always accepted), a standard linear programming
problem.
We also prove that the calculated upper bound is tight [39].

However, the tightness of the bounds does not necessarily
mean there exists a protocol that can always achieve the
upper bounds for an arbitrary workload, faultload and con-
sistency level. In fact, reaching the upper bound generally
requires future knowledge. To understand this, note that a

replica must decide whether a write can be accepted upon
receiving the write. However, an adversary can always con-
struct a workload and a faultload after this point such that
the decision was sub-optimal [39].

3.3 Availability Upper Bound as a Function of
Order Error

An order error bounding protocol needs to answer three
kinds of questions: questions regarding write propagation,
questions regarding write acceptance and questions regard-
ing write commitment. To commit a write, a replica must
see all preceding writes in the serialization order. The seri-

alization order is the global total write order that an order
error bounding protocol tries to maintain across all replicas.
For example, consider a system with two replicas that are
partitioned from each other. Suppose replica1 receives W1

then W2, while replica2 receives W3 then W4. A serializa-
tion order here can be any permutation of the four writes.
If the serialization order is S = W1W2W3W4, then a replica
can only commit W3 after it sees and commits W1 and W2.
Aggressive write propagation always maximizes the writes

seen by a replica at any given time and expedites write com-
mitment. However, it may also increase the number of un-
committed writes on a replica. In our previous example,
if replica2 propagates W3 to replica1 before replica1 ac-
cepts W2, then replica1 cannot commit W3 and its order
error is increased. Thus, while aggressive write propaga-
tion always serves to reduce numerical error and staleness,
in certain cases it can actually increase order error. We use
the following approach to address this issue with aggressive
write propagation. When remote writes are �rst seen by a
replica, they are not applied to the data store immediately,
and thus do not count toward order error. We apply them
to the data store only when they can be committed, so that
remote writes never increase order error (although they do
increase numerical error by de�nition). Local writes are al-
ways applied to the data store immediately as required by
the semantics of the consistency model. This design and ag-
gressive write propagation form the dominating algorithm
for order error.
Questions regarding write acceptance and write commit-

ment belong to Qonline. The key to all write commitment
questions is the serialization order. As long as a serialization
order is determined, the dominating algorithm will behave
deterministically on all write commitment activities. How-
ever, the number of possible serialization orders is factorial
with the number of writes, making an exhaustive search im-
possible. Further, with arbitrary serialization orders, we can
no longer answer write acceptance questions through linear
programming because two writes accepted by a partition
during an interval may not be committed at the same time.
This prevents us from using a single logical write to repre-
sent all writes accepted by a partition during an interval.
To optimize our search on serialization orders, we would

like to �nd a small set of serialization orders that are strictly
\better" than all other serialization orders. Here, we de�ne
a domination relationship among serialization orders (sim-
ilar to the domination relationship de�ned earlier for con-
sistency protocols) to facilitate the following derivation. In
order to be useful, the de�nition of domination between seri-
alization orders must imply domination between protocols,
as follows: Serialization order S dominates serialization or-
der S0 if, for a given workload and faultload, the dominating



algorithm using S can commit a writeW whenever the dom-
inating algorithm using S0 can commit that write. In other
words, S dominates S0 if S allows the commitment of any
write that could be committed using S0. In our previous ex-
ample with two replicas and four writes, serialization order
S =W1W2W3W4 dominates S

0 = W2W1W3W4. This is be-
cause whenever W2 can be committed using S0, the replica
must have already seen W1 (which is accepted before W2),
and thus can also commit W2 in S. The same is true for
W1, W3 and W4. Notice that S0 does not dominate S be-
cause immediately after accepting W1, replica1 can commit
W1 using S, but it cannot commit W1 in S0. Using this
de�nition of \domination", we prove that if S dominates
S0, then the dominating algorithm using S dominates the
dominating algorithm using S0.
Next, we construct three sets of serialization orders as

follows:

ALL All possible serialization orders.

CAUSAL Serialization orders compatible with causal or-
der.

CLUSTER Serialization orders where writes accepted by
the same partition during a particular interval cluster
together.

In our previous example with two replicas, ALL contains
all possible permutations of the four writes, that is, 24 seri-
alization orders. CAUSAL contains the six orderings where
W1 precedes W2 and W3 precedes W4. CLUSTER only
contains W1W2W3W4 and W3W4W1W2, because W1 and
W2 are accepted by the same partition during the interval
and thus cluster together (the same is true for W3 and W4).
For our faultloads, ALL may contain up to 101000 serial-

ization orders, while the size of CLUSTER is smaller than
1000. If we can prove that CAUSAL dominates ALL and
CLUSTER dominates CAUSAL, the upper bound com-
putation becomes tractable by restricting our search scope
to CLUSTER. To prove CAUSAL dominates ALL, we
only need to show that if write W1 causally precedes write
W2, then it is always \better" to place W1 before W2 in
the serialization order. This is true because by the time
any replica sees W2, it must have already seen W1. Thus,
any serialization order can be pair-wise adjusted (according
to causal order) to be a new serialization order that domi-
nates the original one. The proof of CLUSTER dominating
CAUSAL is the key to the whole theory. The intuition is
that it does not expedite write commitment on any replica
if the writes accepted by the same partition during a par-
ticular interval are allowed to split into multiple sections in
the serialization order. The actual proof is intricate and is
available elsewhere for brevity [39].
Using CLUSTER not only enables exhaustive enumera-

tion, it also helps us to search for optimal answers for write
acceptance questions. Recall that without using CLUSTER,
linear programming cannot model the write acceptance prob-
lem because we cannot use one logical write to represent
all writes accepted by a partition during an interval. Now
since we are only concerned with the serialization orders in
CLUSTER, we can again use this approach. Thus, for each
serialization order enumerated, we use the previous \simu-
lation" approach (attaching variables to interval/partition
combinations) to determine the constraints and to derive

the upper bound by solving a linear programming problem.
We also prove that the bound is tight [39].

3.4 General Case Availability Upper Bound
The upper bound derivation for the general case is based

on the derivation for order error. Numerical error, stale-
ness and order error interact in subtle ways. Applying re-
mote writes to the local data store will decrease a replica's
numerical error and staleness. But if these writes cannot
be committed, order error is increased. For the order er-
ror dominating algorithm, remote writes are only applied to
the data store when they can be committed. However, this
approach may not be optimal when considering the interac-
tions between order error, numerical error, and staleness as
described earlier. Thus, besides the three types of questions
an order error bounding protocol needs to answer, the gen-
eral case dominating algorithm must answer a forth type of
question regarding when and how to apply remote writes to
the data store. These questions also belong to Qonline.
Now we need to search for optimal answers on three kinds

of questions: questions on write acceptance, questions on
serialization order and questions on applying remote writes.
In order to apply the results developed before on dominating
serialization orders, we prove that in this general case if se-
rialization order S dominates another serialization order S0,
then the dominating algorithm using S dominates the one
using S0. Thus, all results developed for order error apply
here. We then develop properties of the dominating algo-
rithm to allow the incorporation of applying remote writes
into the linear programming problem. Finally, the same ap-
proach is used to obtain the upper bound as before through
\simulation" and linear programming.

3.5 Complexity and Experience
Our algorithm to compute the availability upper bound

in the general case is exponential in complexity in terms of
the number of intervals. Such exponential complexity comes
from both integer linear programming and enumeration of
serialization orders. We avoid the exponential complexity
of integer linear programming by approximating through
real-number linear programming. The complexity from se-
rialization order enumeration has been tractable for all our
faultloads, completing execution within three hours on a Sun
Ultra-5 Workstation.
The algorithm to compute availability upper bounds is

implemented in approximately 2,000 lines of C++ code.
Numerical error, order error, staleness and a �le describ-
ing faultload and workload serve as inputs to the algorithm.
The code �rst \simulates" aggressive write propagation and
records log contents at the end of each interval. Next, it enu-
merates all serialization orders as described above, and uses
a linear programming solver (PCx [10]) to calculate upper
bounds on availability based on the speci�ed constraints.

4. IMPLEMENTATION
In this section, we discuss details of our prototype repli-

cation system, implementation of various consistency pro-
tocols, an approach for measuring a sample faultload and
creating additional synthetic faultloads with varying char-
acteristics, and the emulation environment used to conduct
sensitivity analysis to various network failure conditions.



Faultload Description Avg. Fail. Rate
SAMPLED1 First day of the 0.17%

RMI-ping trace
SIM0 10 Simulated trace 0.11%
SIM1 00 Simulated trace 1.05%
SIM5 00 Simulated trace 4.12%

Table 1: This table summarizes the characteristics of

faultloads.

4.1 Sample Faultloads
One of the key factors inuencing the availability of In-

ternet services is the rate of failures in the underlying net-
work. Existing work on network measurement [30, 34] uses
fairly coarse-grained inter-arrival times for successive mea-
surements between two sites, with a minimum inter-arrival
of approximately 10 minutes. Such a granularity cannot un-
ambiguously capture the duration of short network failures,
which make up a majority of failure events [30]. Thus, we set
out to collect a sample of Internet connectivity with average
measurement intervals of 3 seconds on each path.
Because measuring Internet failure characteristics is not a

focus of this work, we only present a summary of our mea-
surement methodology here. Full details are available sep-
arately [39]. We measure interconnectivity among 8 sites:
Verio (CA), Rackspace (TX), Rackspace (U.K.), University
of California, Berkeley, University of California, San Diego,
University of Utah, University of Texas, Austin, and Duke
University. All sites have good network connectivity and no
competing CPU activity. The total duration of the trace is
6 days in February 2001, with over 12 million samples. The
faultload has an average failure time on all paths of 0.046%.
We assume that failures last for the entire duration of failed
samples and that no failures take place between two suc-
cessive successful samples. The �ne-granularity of our trace
ensures that the inaccuracy introduced by these assumptions
is relatively small. With these assumptions, we generate a
connectivity matrix for the system as a function of time. We
then calculate the transitive closure of the matrix, to allow
for the ability to mask failures by \routing" through other
replicas [34]. Using the transitive closure serves to isolate
the availability e�ects of continuous consistency from the
e�ects of application-level routing.
To make our evaluation computationally tractable we fo-

cus on the �rst day of this trace (called SAMPLED1), which
has the highest failure rate of 0.17%. We report network
failure rate as the average unavailability of all paths in a
given faultload. Note that the average failure rate cannot
abstract many important aspects of a faultload. For exam-
ple, the timing and nature of failures can mean that two
faultloads with the same average failure rates can result in
very di�erent levels of service availability.
We do not claim that our measured faultload is repre-

sentative. In fact, our measurement sites tend to be well-
connected with relatively little network congestion. Because
we are interested in understanding how the availability of
Internet services is a�ected by a broad range of failure char-
acteristics, we construct a number of synthetic faultloads
with varying characteristics. We use a simple event-driven
simulator to obtain diverse faultloads based on a sample
Internet-like topology generated by the Internet topology

generator [40]. The target topology is a hierarchical 600-
router transit-stub topology with a per-node degree of 4.09,
a 14-hop network diameter, an average of 10.8 hops be-
tween nodes, and 188 biconnected components. There are
24 backbone routers in the sample topology. For each of
these routers, we choose a stub router among the stub do-
mains that is directly connected to the backbone and attach
a replica to that stub router. Thus, we can vary the number
of replicas from 1 to 24, modeling the case where replicas
are widely dispersed and placed at well-connected points in
the network topology. We use exponential distributions for
both failure duration and failure inter-arrival time. By vary-
ing the parameters of the distributions, we obtain a series
of simulated faultloads. For example, \SIM1 00", with an
average failure rate of 1%, is obtained with a failure inter-
arrival mean of 1 day and failure duration mean of of 120
seconds for nodes, and failure inter-arrival mean of 14 days
and failure duration mean of 150 seconds for links. Table 1
summarizes the characteristics of the one-day faultloads we
use in this study; results for additional faultloads are pre-
sented elsewhere [39].

4.2 WAN Prototype Details
We now describe our modi�cations to the TACT proto-

type [36] to study the replicated service availability as a
function of consistency and faultload. The prototype is writ-
ten in Java based on RMI, and write propagation is per-
formed through anti-entropy [31]. It supports three simple
replicated services: an airline reservation system, a bulletin
board system, and a load-balancing request distributor [36].
For this paper, we run our availability experiments using the
bulletin board service. In addition to faultload and consis-
tency level, the availability of a replicated service will also
depend upon the speci�cs of the consistency maintenance
protocol|whether it be strong consistency, optimistic con-
sistency or somewhere in between. We thus extend the pro-
totype to use a variety of consistency protocols, as described
below.
Our prototype uses the only protocol we are aware of to

bound numerical error [37]. Each replica ensures that the
error bound on other replicas is not violated. If necessary,
the replica may push writes to other replicas before accept-
ing a new write. For example, if numerical error is uniformly
set to twenty at all replicas and there are eleven total repli-
cas, each replica may bu�er at most two unseen writes before
propagating those writes to other replicas. If this write prop-
agation cannot be performed, future writes must be rejected
(decreasing service availability) to ensure that the numerical
error bound on other replicas is not violated.
A number of di�erent write commitment algorithms can

be used for bounding order error. We implement three popu-
lar such protocols in our prototype, primary copy [31], Gold-
ing's algorithm [16], and voting [15, 20]. Essentially, all three
write commitment algorithms determine a total order on all
writes. For completeness, we present a brief summary of
each protocol below.
First, in the primary copy protocol, a write is committed

when it reaches the primary replica and the serialization
order is the write order seen by the primary replica. A
replica that needs to reduce order error commits writes by
�rst pushing its tentative writes to the primary and then
pulling any other unseen updates from the primary.
Next, in Golding's algorithm, each write is assigned a logi-



cal timestamp that determines the serialization order. Each
replica maintains a version vector [16] to determine whether
or not it has seen all writes with logical time less than t.
If so, it is able to commit all writes with logical timestamp
smaller than t. To reduce order error in Golding's algo-
rithm, a replica pulls writes from other replicas to advance
its version vector (and hence commit additional writes).
Finally, a voting protocol conducts a series of elections to

determine a serialization order. During a round, each replica
casts a vote for the �rst uncommitted write in their write log.
The write with the most votes wins and is committed next
(in serialization order) across all replicas. While the weight
of votes cast by each replica may be varied dynamically, our
evaluation considers only unit weight (though our implemen-
tation is more general). Votes are also propagated through
anti-entropy. We use special techniques in our prototype
for multiple rounds of elections to be in progress simultane-
ously [20], greatly improving system performance. To reduce
order error with voting, a replica �rst pushes writes to re-
mote sites. These sites then cast their votes and the results
are pulled in subsequent anti-entropy sessions to allow write
commitment.

4.3 Emulation Environment and Verification
A goal of this work is to study service availability while

varying system characteristics, including consistency level,
consistency protocol, and faultload. Unfortunately, it is
not possible to �x Internet failure characteristics while re-
executing our prototype with di�erent consistency levels and
protocols. Thus, we perform the majority of our evaluation
using a local area emulation environment. Emulation ac-
curacy is veri�ed through live wide-area deployment. Our
goal is to run our prototype on a LAN while subjecting it
to one of a number of sample faultloads. We instrument our
prototype replication system to check a connectivity matrix
that varies as a function of time (as determined by a given
faultload). An RMI between two nodes is allowed to proceed
only if the nodes are connected at the time of the operation.
Because we focus on service availability rather than perfor-
mance, we do not emulate variable latency, bandwidth, or
drop rate [28].
To validate emulation results, we deploy our prototype

system running the replicated bulletin board service on all
the sites used for measuring faultload, except for the Rack-
space machine in Texas, which was not available. We run
two separate 24 hour experiments at two di�erent target
consistency levels using Golding's algorithm to bound or-
der error. In the �rst experiment, we set numerical error
to six (recall that there are seven replicas total) and leave
order error unbounded, while in the second experiment, nu-
merical error is unbounded and order error is set to one.
These two consistency levels are intended to stress the em-
ulation environment. With small numerical error and order
error, there will be more communication and more events,
and thus it increases the possibility that the real-time emu-
lator may miss some deadlines or process events in di�erent
orders. Our system logs all writes with timestamps. These
two runs produce two sample faultloads that we play back to
our emulation environment, with writes injected at the same
rate as the wide-area deployment based on our timestamp
logs. Table 2 summarizes the accuracy of our emulation en-
vironment relative to the wide-area deployment. A number
of separate smaller-scale deployments yield similar accuracy.

While there is room to improve the accuracy of our emula-
tion environment, we believe that the general availability
trends revealed by our emulation environment for di�erent
consistency levels and faultloads are accurate.
Finally, when either numerical error or order error is set

to zero in the presence of failures, an atomic commit pro-
tocol (ACP) [5] is required to determine whether a write
can be accepted. ACPs are inherently blocking, meaning
that a failure may force an ACP to block until the failure
is repaired. However, because ACPs and availability under
strong consistency are not the focus of this work and because
di�erent ACPs may result in very di�erent levels of service
availability, we choose to simulate the best-case service avail-
ability at the strong consistency extreme of the spectrum.
Note that all other data points are derived from our proto-
type and that our methodology for determining the upper
bound on service availability is general for all combinations
of numerical and order error. Upon receiving a write, our
code determines the necessary subset of replicas that must
be connected for a particular consistency protocol to accept
the write (e.g., for voting, it checks if the partition where the
write originated forms a majority partition). If the proper
subset is not available, the write is rejected.

5. SYSTEM AVAILABILITY
In this section we quantify our prototype's availability as a

function of various faultloads, consistency levels, and consis-
tency protocols. We also compare the achieved availability
of our prototype software relative to the tight upper bounds.
Finally, we explore the e�ects of the degree of replication on
service availability.
Because of space limitations, we omit an evaluation of the

staleness metric and focus on numerical error and order er-
ror. Preliminary evaluations and the theory in Section 3
show that staleness exhibits behavior very similar to nu-
merical error. For staleness, consistency is bounded by the
passage of real time rather than by the acceptance of a given
number of writes system wide; for a �xed update rate, nu-
merical error and staleness are directly related.

5.1 Achieved Availability vs. Upper Bound
The goal of this section is to develop an understanding of

the availability characteristics of replicated network services
as a function of consistency and failure characteristics. Un-
less otherwise speci�ed, the results are generated in the LAN
emulation environment described in Section 4.3. Thus, data
points are from repeated runs of the TACT software while
varying: i) numerical and order error, ii) consistency pro-
tocols, and iii) faultloads. Our software runs on a cluster
of seventy 700-800 Mhz Pentiums running Linux and So-
laris, with each machine playing back a target workload and
faultload in real time over a 24 hour period for each data
point. We compare these data points against the tight upper
bounds for service availability using the methodology from
Section 3. The workload is a uniform update rate of one
write per 10 seconds on each replica, resulting in 0.8 writes
per second system-wide for the eight emulated replicas.
For our initial set of results, we use service availability

(Availservice from Section 2) as the availability metric. We
also assume that replicas accept all reads and reject the
writes that would violate global consistency requirements.
Thus, we can re-de�ne service availability to be the percent-
age of writes that are accepted by the replicas.



Consistency # Writes # Rejected Avail. # Writes # Rejected Avail. Accuracy
(WAN) (WAN) (WAN) (emulation) (emulation) (emulation)

NE=6, OE=1 120,703 1,699 98.6% 120,703 1,762 98.5% 96.3%
NE=1, OE=1 60,439 293 99.5% 60,439 298 99.5% 98.3%

Table 2: Wide-area deployment and emulation veri�cation results.
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Figure 2 plots availability as a function of numerical er-
ror for the SIM1 00 faultload (see Table 1). The solid curve
represents the calculated upper bound on availability as a
function of numerical error. This baseline numerical error
bounding protocol achieves approximately 1% less availabil-
ity than the upper bound. Recall that a 1% improvement
in availability is signi�cant, corresponding to approximately
3.5 additional days of uptime per year. The baseline algo-
rithm enforces numerical error lazily. That is, it does not
push writes until required to maintain a given level of consis-
tency, typically resulting in the lowest communication costs.
However, results from Section 3 show that the best overall
availability is achieved through aggressive write propaga-
tion. Thus, we modify our numerical error bounding algo-
rithm to push writes more aggressively. Here, the system
always attempts to maintain a numerical error of zero asyn-
chronously but continues to operate if it fails as long as the
\target" numerical error bounds are not violated. The curve

labeled Aggr in Figure 2 depicts the results of this modi�-
cation. Using this technique, achieved availability closely
approaches the upper bound.

Figure 3 shows availability as a function of order error for
the SIM1 00 faultload using our order error bounding pro-
tocols. The graph depicts curves for two versions of each
algorithm, one for the baseline implementation that bounds
order error lazily and one for an aggressive version that at-
tempts to maintain order error as close to zero as possi-
ble. The solid curve shows the computed tight upper bound
on availability. Even with aggressive order error bounding,
Golding's algorithm achieves low availability in general be-
cause committing a write usually requires the advancement
of all entries in a replica's version vector. This operation typ-
ically requires full connectivity to pull writes from remote
replicas, often forcing the system to reject writes during pe-
riods of disconnectivity (SIM1 00 achieves full connectivity
only 96% percent of the time).

Primary copy typically delivers the highest level of avail-
ability. Our sample faultload contains largely singleton par-
titions. Thus, with 8 replicas in our experiments, there is
a 1=8th probability that the primary copy is inaccessible by
the rest of the network (since there is roughly equal failure
rates among the replicas). Thus, primary copy should de-
liver 8 times better availability than Golding's algorithm;
this can be veri�ed in Figure 3. Note that the relative ad-
vantage of primary copy will increase with the number of
replicas. One unique characteristic of the primary copy ap-
proach is that its achieved availability is relatively insensi-
tive to aggressive order error bounding. With primary copy,
inconsistency accumulated at the beginning of a connectivity
interval generally does not adversely impact overall service
availability because the primary is still accessible for most
partition scenarios (allowing writes to be committed even
after the partition occurs).

With baseline order error bounding, voting delivers the
lowest overall level of service availability. Interestingly, with
aggressive order error bounding, voting achieves the highest
level of availability, closely tracking the upper bound. This
di�erence results from the inherent properties of the voting
algorithm. Consider the case where order error is bound
lazily at one. Here, a replica can bu�er one uncommitted
local write and will cast a vote for the write before any other
replica sees the write or can cast a vote for it. Then poten-
tially, each replica in the system casts a vote for a di�erent
uncommitted write. In this case, a replica must collect votes
from all remote replicas to determine the winner because
each write holds exactly one vote and any unknown vote
could be the deciding one. In the presence of a partition,
no replica will be able to commit any write. While retiring
the minority partition would allow the system to commit
the write, it would violate our assumption that reads are
never rejected. Worse yet, once the system enters such a
state, it must wait for the partition to be repaired before
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any additional writes can be committed. Aggressive order
error bounding (or order error set to zero) greatly improves
voting's availability because each replica needs to commit
writes immediately. Write commitment is accomplished by
pushing the write to all replicas to allow them to cast their
vote. This operation reduces the window of vulnerability
(described above) where each replica may cast a vote for
distinct writes. The achieved availability can be better than
primary copy since the primary may be partitioned from
the rest of the network, whereas with voting, the system
can always adapt to choose the majority partition.
Figures 4 and 5 plot service availability using a one-day

sample of our measured faultload. The results are qualita-
tively similar to availability for the SIM1 00 faultload. How-
ever, with the lower rate of underlying failures (0.2% versus
1.0%), all of the algorithms demonstrate much higher avail-
ability. For Figure 4, the curve labeled Aggr+ is a modi�ca-
tion to our protocol that repeatedly attempts to set numer-
ical error to zero even if the �rst attempt fails. With this
change, achieved availability more closely tracks the upper
bound. Figures 6 and 7 show similar results for a faultload
with a much higher failure rate (over 4%). It is interest-
ing to note the importance of using aggressive order error
bounding; this optimization alone improves service avail-
ability from approximately 84% to more than 96% under
voting. Also, for SIM5 00, the bene�ts of relaxing consis-
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tency are not as signi�cant because, with a high failure rate,
the replication system needs much lower consistency levels
to achieve high availability. Similar to Amdahls's law gov-
erning performance, system availability will be limited by
the weakest link in the chain. In this scenario, optimization
e�orts are likely better directed toward improving reliability
of the Internet.
For all faultloads studied, we observe that the theoretical

availability upper bound can be closely approached by our
simple protocols. This results from the following character-
istics of both our measured and simulated faultloads:

1. All partitions are singleton partitions. That is, a replica
is partitioned away from the rest of the network. How-
ever, it is possible that multiple singleton partitions are
present simultaneously.

2. For most failures, the system transitions from fully
connected to a singleton partition scenario and then
back to fully connected.

Of course, we do not claim all faultloads have such prop-
erties. However, the above observations are consistent with
expected faultloads given the Internet's hierarchical topol-
ogy and the power-law distribution of node degrees [12]. For
faultloads that do not have these properties, the availability
upper bounds cannot be easily approached. We have veri�ed
this through a manually-constructed faultload [39].
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Figure 8 isolates the e�ects of network failure rate on the
upper bound of service availability for 8 replicas subjected
to a variety of simulated faultloads with di�erent average
failure rate. As expected, service availability degrades with
increasing failure rates. Thus, a given level of relaxed con-
sistency can only mask network failures to a certain point.
For example, when numerical error is zero, service availabil-
ity quickly degrades from near-100% for a reliable network
(0.1% failure rate) down to 84% when network failures oc-
cur 4% of the time (recall that average failure rate does
not necessarily correspond to periods of full connectivity).
Availability degrades much more gracefully for bounded or-
der error and unbounded numerical error because a total
serialization order can be determined even in the face of
some network partitions. On the other hand, the nature
of numerical error dictates that the system will eventually
block (rejecting writes) for a partition of su�cient duration.

5.2 Availability/Communication Tradeoffs
An interesting result of our work is that achieving max-

imum service availability with a relaxed consistency model
can entail increased communication overhead. As discussed
earlier, the communication costs of maintaining consistency
can be reduced by waiting as long as possible to propagate
writes. This approach allows the system to potentially com-
bine multiple updates (depending on application semantics)
and to amortize communication costs (packet header over-

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2 4 6 8 10 12 14 16 18 20

N
um

be
r o

f M
es

sa
ge

s 
(in

 m
ill

io
ns

)

Order Error Bound

(Voting, Aggr)
(Voting, Base)

(Golding’s, Aggr)
(Golding’s, Base)

(Primary, Aggr)
(Primary, Base)

Figure 10: Number of messages to maintain order error.

heads, packet boundaries, and ramping up to the bottleneck
bandwidth in TCP) over multiple logical writes. For exam-
ple, studies of �le system workloads show that �le and indi-
vidual write lifetimes are short [3, 26], meaning that waiting
to transmit an update may obviate the need to ever transmit
the update. For other applications, such as load balancing
or resource allocation, multiple numerical updates to a sin-
gle data item can often be combined by waiting a threshold
period of time. Thus, waiting as long as possible (while still
maintaining consistency bounds) to propagate writes has the
potential for reducing communication costs and improving
overall service throughput (by requiring less update process-
ing at each node). However, our results show that maximiz-
ing availability requires aggressive write propagation, so that
the system stays as close to strong consistency as possible
during periods of good connectivity. The essential insight
is that numerical error, order error, and staleness provide
each replica with a \window" of writes that need not be
propagated to remote replicas. Because the system cannot
predict when a failure will take place or how long it might
last, striving to keep the window empty during periods of
good connectivity ensures that the system will maximize the
duration of failures that it can mask from end users before
being forced to reject accesses.
In this section, we quantify this communication versus

availability tradeo�. Previously, we showed how aggressive
consistency maintenance improves service availability. Fig-
ures 9 and 10 show the corresponding increase in the number
of messages incurred by our consistency protocols using the
faultload generated during WAN veri�cation (described in
Section 4.3). Results for other faultloads are similar. The
update rate here is 1.4 updates per second system-wide,
which is evenly distributed across all 7 replicas. Each curve
in Figure 9 corresponds to a di�erent aggressively enforced
numerical error.
As expected, as we reduce the enforced numerical error,

communication costs increase (with a corresponding increase
in availability). For order error (as depicted in Figure 10),
our target protocols incur di�erent communication costs.
Voting requires the most messages because, to commit a
write, a replica must potentially push its writes to all repli-
cas followed by a pull of votes from all replicas. Golding's
algorithm requires approximately half the messages required
by voting because Golding's only needs to pull updates from
remote replicas to reduce order error. Finally, with 7 repli-
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with Availnetwork = 1� 1%=n.

cas, primary copy requires about 1=7th of the messages re-
quired by voting. Note that our prototype is not optimized.
Thus, our reported communication cost may be somewhat
higher than required. However, we believe the relative com-
munication costs for the various protocols and the revealed
tradeo�s are representative.

5.3 Effects of Replication Scale
To this point, our evaluation of service availability consid-

ered a �xed number (eight) of replicas. We now attempt to
isolate the e�ect of the number of replicas on client availabil-
ity, which is de�ned as the percentage of end user accesses
that are accepted by the service (Availclient, see Section 2).
Our goal is to investigate the tension to replicate widely, to
maximize the \reach" of a service (maximize Availnetwork),
and to centralize a service, to minimize consistency over-
head (maximize Availservice). Carrying out this study re-
quires knowledge of Availnetwork as the number of replicas
changes. Since we do not have service reachability measure-
ments to derive such a function (in general, measuring this
requires access to a large client population), we arbitrar-
ily pick the percentage of the client population that can-
not reach any replica to be 1%=n and 5%=n, where n is
the number of replicas (e.g., 5 replicas corresponds to an
Availnetwork value of 99.8% in the �rst case and 99% in the
second). In both cases, each additional replica results in
diminishing returns with respect to additional clients able
to access the service. Finally, we consider a read to write
ratio of 10 : 1. All results in this subsection are for calcu-
lated upper bounds. Note that we earlier demonstrated the
ability of real protocols to approach these upper bounds for
the studied faultloads. We restrict our attention to relaxing
numerical error because of space limitations.
Figure 11 shows the e�ect of varying the degree of replica-

tion on service availability. Each curve represents a di�erent
faultload and di�erent numerical error. For a 1%=n growth
rate and a high network failure rate (SIM5 00 curves), the
optimal number of replicas tops out at 2. With a lower
failure rate (SIM1 00), and zero numerical error, the best
availability is delivered with 4 replicas. Once consistency is
relaxed su�ciently (numerical error at 250 with SIM1 00)
or a low failure rate model is assumed (SIM0 10), avail-
ability continues to increase to eight replicas (and beyond).
Figure 12 shows similar results when the marginal bene�t
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Figure 12: Availclient as function of replication scale

with Availnetwork = 1� 5%=n.

of each replica is larger. Here, even with a high failure rate
(SIM5 00) and zero numerical error, availability increases to
4 replicas before starting to decrease. For other cases, the
marginal bene�t of each additional replica on Availnetwork is
large enough to overcome the cost of replication (reduction
on Availservice).

5.4 Discussion
In summary, our evaluation shows that simple optimiza-

tions to existing consistency protocols can greatly improve
the availability of replicated services. For our target fault-
loads, we �nd that staying as close to strong consistency as
possible during times of good connectivity allows services
to approach the tight upper bounds on availability derived
in Section 3. Of the order error bounding algorithms con-
sidered, voting and primary copy generally achieve the best
availability (using our optimizations), with voting achieving
slightly better availability while primary copy incurs signif-
icantly less communication overhead. Our results on avail-
ability as a function of the number of replicas quanti�es the
intuition that additional replicas will not always improve
service availability and can in fact reduce it. Thus, system
designers must carefully balance the marginal availability
bene�t of additional replicas against the costs of maintain-
ing consistency for a given faultload and consistency level.
The results in this section also indicate a tradeo� between

service read and write availability. Increasing the number of
replicas will increase read availability since a larger number
of clients will be able to access the service. However, write
availability is potentially reduced because of the increased
probability that the system will not be able to accept writes
in the face of network partitions. One way to address this
tension is to dynamically retire minority partitions that are
unable to enforce consistency bounds for a threshold period
of time. However, improving availability through retiring
minority partitions requires an accurate prediction of future
workloads and faultloads.

6. RELATED WORK
This work uses the continuous consistency model devel-

oped in our earlier e�orts [36, 38], which describe the moti-
vation for continuous consistency and quanti�es the perfor-
mance and semantic bene�ts for a range of Internet services.



This paper quanti�es the inherent costs, in terms of consis-
tency and communication, of increasing the availability of
replicated services. Further, we derive tight upper bounds
on the availability of services for a given set of environmen-
tal conditions and show that simple optimizations to exist-
ing consistency protocols allow services to approach these
bounds for our set of workloads and faultloads.
Fox and Brewer [13] discuss the potential tradeo�s be-

tween consistency and availability in the context of a cluster-
based Internet service. Relative to their e�orts, we focus
on wide-area service availability and are able to quantify
service availability as a function of consistency. A number
of other e�orts explore continuous consistency models [1,
22, 32]. We believe our methodology and results are gener-
ally applicable to a broad range of consistency models [38].
Availability of a replication system is also related to the
\availability" of distributed consensus protocols. Relative
to protocols [25] for qualitatively increasing the availabil-
ity of distributed consensus, our work provides a framework
for quantifying availability improvements under a variety of
relaxed conditions (where relaxed consistency might corre-
spond to bounded disagreement in consensus).
Chandra et.al.[8] derive an analytical failure model for

an average Internet path and then simulate the e�ects of
caching and replication to mask Internet failures. For dy-
namic data, they assume optimistic consistency where ser-
vice availability is solely limited by the time to create a
replica or prefetch appropriate state. Many e�orts [2, 4,
9, 11, 19, 23] explore service availability under strong con-
sistency, typically in the context of quorum systems. Amir
et.al. [2] evaluate the availability of a quorum system run-
ning at two Internet sites. Coan et.al. [9] derive tight avail-
ability upper bounds in the case of two-way partitions. An-
other study [19] shows that replication provides little avail-
ability bene�ts relative to an optimally placed centralized
service under strong consistency. This con�rms our argu-
ment that, in many cases, higher availability can only be
achieved by relaxing consistency. In general, the above ef-
forts focus on availability at strong consistency through sim-
ulation and analysis whereas we study availability along the
entire consistency spectrum through both wide-area deploy-
ment and local area emulation.

7. CONCLUSIONS
The development of the Internet and the increasing pop-

ularity of mobile communication make networked access to
remote resources the common case for computing. In these
scenarios, service utility is often determined by its availabil-
ity rather than the traditional metric of raw performance.
Replication is a key approach for improving the availabil-
ity of network services. Given the well-known tradeo�s be-
tween strong and optimistic consistency models, this paper
explores the bene�ts of a continuous consistency model for
improving service availability. At a high level, this model
allows applications to bound their maximum distance from
strong consistency. The long-term goal of this work is to al-
low applications to dynamically set their consistency level,
degree of replication, and placement of replicas based on
changing network and service characteristics to achieve a
target level of service availability.
In support of this goal, this paper makes the following

contributions. First, we quantify the availability of a pro-
totype replicated service running across the Internet. Our

prototype system measures service availability while varying
the consistency level, the protocol used to enforce consis-
tency, and the failure characteristics of the underlying net-
work. Our results show that simple optimizations to existing
consistency protocols can signi�cantly improve service avail-
ability (e.g., going from 99% to 99.9% in one scenario) and
reveal that relaxed consistency cannot simultaneously maxi-
mize availability and minimize communication. We also de-
velop a theory to derive tight upper bounds on service avail-
ability as a function of workload, failure characteristics, and
consistency level, enabling system designers to reason about
the absolute merits of various consistency protocols and op-
timizations. Finally, we show that simple optimizations to
existing consistency protocols enable services to approach
our calculated availability upper bounds in our target sce-
narios.
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