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In this paper we examine the problem of extending modern operat-
ing systems to run efficiently on large-scale shared memory multi-
processors without a large implementation effort. Our approach
brings back an idea popular in the 1970s, virtual machine monitors.
We use virtual machines to run multiple commodity operating sys-
tems on a scalable multiprocessor. This solution addresses many of
the challenges facing the system software for these machines. We
demonstrate our approach with a prototype called Disco that can
run multiple copies of Silicon Graphics’ IRIX operating system on
a multiprocessor, Our experience shows that the overheads of the
monitor are small and that the approach provides scalability as well
as the ability to deal with the non-uniform memory access time of
these systems. To reduce the memory overheads associated with
running multiple operating systems, we have developed techniques
where the virtual machines transparently share major data struc-
tures such as the program code and the file system buffer cache. We
use the distributed system support of modern operating systems to
export a partial single system image to the users. The overall solu-
tion achieves most of the benefits of operating systems customized
for scalable multiprocessors yet it can be achieved with a signifi-
cantly smaller implementation effort.

1 Introduction

Scalable computers have moved from the research lab to the mar-
ketplace. Multiple vendors are now shipping scalable systems with
configurations in the tens or even hundreds of processors. Unfortu-
nately, the system software for these machines has often trailed
hardware in reaching the functionality and reliability expected by
modern computer users.

Operating systems developers shoulder much of the blame for
the inability to deliver on the promises of these machines. Extensive
modifications to the operating system are required to efficiently
support scalable machines. The size and complexity of modem op-
erating systems have made these modifications a resource-intensive
undertaking.

In this paper, we present an alternative approach for construct-
ing the system software for these large computers. Rather than mak-
ing extensive changes to existing operating systems, we insert an
additional layer of software between the hardware and operating
system. This layer acts like a virtual machine monitor in that multi-
ple copies of “commodity” operating systems can be run on a single
scalable computer. The monitor also allows these commodity oper-
ating systems to efficiently cooperate and share resources with each
other. The resulting system contains most of the features of custom
scalable operating systems developed specifically for these ma-
chines at only a fraction of their complexity and implementation
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cost. The use of commodity operating systems leads to systems that
are both reliable and compatible with the existing computing base.

To demonstrate the approach, we have constructed a prototype
system targeting the Stanford FLASH shared memory multiproces-
sor [17], an experimental cache coherent non-uniform memory ar-
chitecture (ccNUMA) machine. The prototype, called Disco,
combines commodity operating systems not originally designed for
such large-scale multiprocessors to form a high performance sys-
tem software base.

Disco contains many features that reduce or eliminate the
problems associated with traditional virtual machine monitors. Spe-
cifically, it minimizes the overhead of virtual machines and enhanc-
es the resource sharing between virtual machines running on the
same system. Disco allows the operating systems running on differ-
ent virtual machines to be coupled using standard distributed sys-
tems protocols such as NFS and TCP/IP. It also allows for efficient
sharing of memory and disk resources between virtual machines.
The sharing support allows Disco to maintain a global buffer cache
transparently shared by all the virtual machines, even when the vir-
tual machines communicate through standard distributed protocols.

Our experiments with realistic workloads on a detailed simu-
lator of the FLASH machine show that Disco achieves its goals.
With a few simple modifications to an existing commercial operat-
ing system, the basic overhead of virtualization is at most 16% for
all our uniprocessor workloads. We show that a system with eight
virtual machines can run some workloads 40% faster than on a
commercial symmetric multiprocessor operating system by in-
creasing the scalability of the system software, without substantial-
ly increasing the system’s memory footprint. Finally, we show that
page placement and dynamic page migration and replication allow
Disco to hide the NUMA-ness of the memory system, improving
the execution time by up to 37%.

In Section 2, we provide a more detailed presentation of the
problem being addressed. Section 3 describes an overview of the
approach and the challenges of using virtual machines to construct
the system software for large-scale shared-memory multiproces-
sors. Section 4 presents the design and implementation of Disco
and Section 5 shows experimental results. We end the paper with a
discussion of related work in Section 6 and conclude in Section 7.

2 Problem Description

This paper addresses the problems seen by computer vendors at-
tempting to provide system software for their innovative hardware.
For the purposes of this paper, the innovative hardware is scalable
shared memory multiprocessors, but the issues are similar for any
hardware innovation that requires significant changes in the system
software. For shared memory multiprocessori, research groups
have demonstrated prototype operating systems such as Hive [5]
and Hurricane [25] that address the challenges of scalability and
fault containment. Silicon Graphics has announced the Cellular
IRIX kernel to support its shared memory machine, the
Origin2000 [18]. These designs require significant OS changes, in-
cluding partitioning the system into scalable units, building a single
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FIGURE 1. Architecture of Disco: Disco is a virtual machine monitor, a software layer between the hardware and multiple virtual
machines that run independent operating systems. This aliows muitipie copies of a commodity operating system to coexist with speciai-
ized “thin” operating systems on the same hardware. The multiprocessor consists of a set of processing elements (PE) connected by a
high-performance interconnect. Each processing element contains a number of processors and a portion of the memory of the machine,

system image across the units, as well as other features such as fault
containment {5] and ccNUMA management [26].

With the size of the system software for modern computers in
the millions of lines of code, the umusca for ccNUMA machines
represent a significant development cost. These changes have an
impact on many of the standard modules that make up a modern
system, such as virtual memory management and the scheduler. As
a result, the system software for these machines is generally deliv-
ered uomf’mnﬂv later than the hardware, Even when the chanaec

are functlonally complete, they are likely to introduce instabilities
for a certain period of time.

Late, incompatibie, and possibly even buggy system sofiware
can significantly impact the success of such machines, regardless of
the innovations in the hardware. As the computer industry matures,
users expect to carry forward their large base of existing application
programs. Furthermore, with the increasing role that computers
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available computing systems. The cost of achieving reliability in
computers may even dwarf the benefits of the innovation in hard-
ware for many application areas.

Computer hardware vendors that use “commodity” operating
systems such as Microsoft’s Windows NT [9] face an even greater

problem in obtaining operating system support for their ccNUMA -

multiprocessors. These vendors need to persuade an independent

company to make changes to the operating system to suppori the

new hardware. Not only must these vendors deliver on the promises -

of the innovative hardware, they must also convince powerful soft-
ware companies that running on their hardware is worth the effort
of the port [20].
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tects frequently complain about the constraints and inflexibility of
system software. From their perspective, these software constraints
are an impediment to innovation. To reduce the gap between hard-
ware innovations and the adaptation of system software, system de-
velopers must find new ways to develop their software more
quickly and with fewer risks of incompatibilities and instabilities.

3 A Return to Virtual Machine Monitors
To address the problem of providing system software for scalable

multiprocessors, we have developed a new twist on the relatively
old idea of virtual machine monitors [13]. Rather than attempting to
modrfy ex:stmg operatlng systems to run on scalable shared-mem-
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tween the hardware and the operating system. This layer of
software, called a virtual machine monitor, virtualizes all the re-
sources of the machine, exporting a more conventional hardware
interface to the operating system. The monitor manages all the re-
sources so that multiple virtual machines can coexist on the same
multiprocessor. Fxgure 1 shows how the virtual machine monitor
allows multiple copies of potentially different operating systems to
coexist.

Virtual machine monitors, in combination with commodity
and specialized operating systems, form a flexible system software
solution for these machines. A large ccNUMA multiprocessor can
be configured with muitiple virtual machines each running a com-

modity gpneratine system such ac Microsoft’s Windowe NT or cama
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variant of UNIX. Each virtual machine is configured with the pro-
cessor and memory resources that the operating system can effec-
tively handle. The virtual machines communicate using standard
distributed protocols to export the image of a cluster of machines.
Although the system looks like a cluster of loosely-coupled
machines, the virtual machine monitor uses global policies to man-
age all the resources of the machine, allowing workloads to cxploit
the une-gfail‘l resource sharing potential of the hardware, For exam-
ple, the monitor can move memory between virtual machines to
keep applications from paging to disk when free memory is avail-
able in the machine. Similarly, the monitor dynamically schedules
virtual processors on the physical processors to balance the load

acroce the machine
across the machine.

The use of commodity software leverage the significant engi-
neering effort invested in these operating systems and allows
ccNUMA machines to support their large application base. Since
the monitor is a relatively simple piece of code, this can be done
with a small implementation effort as well as with a low risk of in-
troducing software bugs and incompatibilities.

The approach offers two different possible solutions to handlc
applications whose resource needs exceed the scalability of com-
modity operating systems. First, a relatively simple change to the
commodity operating system can allow applications to explicitly
share memory regions across virtual machine boundaries, The mon-



itor contains a simple interface to setup these shared regions. The
operating system is extended with a special virtual memory seg-
ment driver to allow processes running on multiple virtual ma-
chines to share memory. For example, a parallel database server
could put its buffer cache in such a shared memory region and have
query engines running on multiple virtual machines.

Second, the flexibility of the approach supports specialized
operating systems for resource-intensive applications that do not
need the full functionality of the commodity operating systems.
These simpler, specialized operating systems better support the
needs of the applications and can easily scale to the size of the ma-
chine. For example, a virtual machine running a highly-scalable
lightweight operating system such as Puma [24] allows large scien-
tific applications to scale to the size of the machine. Since the spe-
cialized operating system runs in a virtual machine, it can run
alongside commedity operating systems running standard applica-
tion programs. Similarly, other important applications such as data-
base and web servers could be run in highly-customized operating
systems such as database accelerators.

Besides the flexibility to support a wide variety of workloads
efficiently, this approach has a number of additional advantages
over other system software designs targeted for ccNUMA ma-
chines. Running multiple copies of an operating system, each in its
own virtual machine, handles the challenges presented by ccNU-
MA machines such as scalability and fault-containment. The virtual
machine becomes the unit of scalability, analogous to the cell struc-
ture of Hurricane, Hive, and Cellular IRIX. With this approach,
only the monitor itself and the distributed systems protocols need to
scale to the size of the machine. The simplicity of the monitor
makes this task easier than building a scalable operating system.

The virtual machine also becomes the unit of fault contain-
ment where failures in the system software can be contained in the
virtual machine without spreading over the entire machine. To pro-
vide hardware fault-containment, the monitor itself must be struc-
tured into cells. Again, the simplicity of the monitor makes this
easier than to protect a full-blown operating system against hard-
ware faults.

NUMA memory management issues can also be handled by
the monitor, effectively hiding the entire problem from the operat-
ing systems, With the careful placement of the pages of a virtual
machine’s memory and the use of dynamic page migration and
page replication, the monitor can export a more conventional view
of memory as a uniform memory access (UMA) machine. This al-
lows the non-NUMA-aware memory management policies of com-
modity operating systems to work well, even on a NUMA machine.

Besides handling ccNUMA multiprocessors, the approach
also inherits all the advantages of traditional virtual machine mon-
itors, Many of these benefits are still appropriate today and some
have grown in importance. By exporting multiple virtual machines,
a single ccNUMA multiprocessor can have multiple different oper-
ating systems simultaneously running on it. Older versions of the
system software can be kept around to provide a stable platform for
keeping legacy applications running. Newer versions can be staged
in carefully with critical applications residing on the older operating
systems until the newer versions have proven themselves. This ap-
proach provides an excellent way of introducing new and innova-
tive system software while still providing a stable computing base
for applications that favor stability over innovation.

3.1 Challenges Facing Virtual Machines

Unfortunately, the advantages of using virtual machine monitors
come with certain disadvantages as well. Among the well-docu-
mented problems with virtual machines are the overheads due to the
virtualization of the hardware resources, resource management
problems, and sharing and communication problems.
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Overheads. 1he overheads present in traditional virtual machine
monitors come from many sources, including the additional excep-
tion processing, instruction execution and memory needed for vir-
tualizing the hardware. Operations such as the execution of
privileged instructions cannot be safely exported directly to the op-
erating system and must be emulated in software by the monitor.
Similarly, the access to I/0 devices is virtualized, so requests must
be intercepted and remapped by the monitor.

In addition to execution time overheads, running multiple in-
dependent virtual machines has a cost in additional memory. The
code and data of each operating system and application is replicated
in the memory of each virtual machine. Furthermore, large memory
structures such as the file system buffer cache are also replicated re-
sulting in a significant increase in memory usage. A similar waste
occurs with the replication of file systems for the different virtual
machines.

Resource Management. Virtual machine monitors frequently
experience resource management problems due to the lack of infor-
mation available to the monitor to make good policy decisions. For
example, the instruction execution stream of an operating system’s
idle loop or the code for lock busy-waiting is indistinguishable at
the monitor’s level from some important calculation. The result is
that the monitor may schedule resources for useless computation
while useful computation may be waiting. Similarly, the monitor
does not know when a page is no longer being actively used by a
virtual machine, so it cannot reallocate it to another virtual ma-
chine. In general, the monitor must make resource management de-
cisions without the high-level knowledge that an operating system
would have.

Communication and Sharing. Finally, running multiple inde-
pendent operating systems made sharing and communication diffi-
cult. For example under CMS on VM/370, if a virtual disk
containing a user’s files was in use by one virtual machine it could
not be accessed by another virtual machine. The same user could
not start two virtual machines, and different users could not easily
share files. The virtual machines looked like a set of independent
stand-alone systems that simply happened to be sharing the same
hardware.

Although these disadvantages still exist, we have found their
impact can be greatly reduced by combining recent advances in op-
erating system technology with some new tricks implemented in the
monitor. For example, the prevalence of support in modern operat-
ing systems for interoperating in a distributed environment greatly
reduces the communication and sharing problems described above.
In the following section we present techniques that allow the over-
heads to be small compared to the benefits that can be achieved
through this approach.

4 Disco: A Virtual Machine Monitor

Disco is a virtual machine monitor designed for the FLASH multi-
processor [17], a scalable cache-coherent multiprocessor. The
FLASH multiprocessor consists of a collection of nodes each con-
taining a processor, main memory, and I/O devices. The nodes are
connected together with a high-performance scalable interconnect.
The machines use a directory to maintain cache coherency, provid-
ing to the software the view of a shared-memory multiprocessor
with non-uniform memory access times. Although written for the
FLASH machine, the hardware model assumed by Disco is also
available on a number of commercial machines including the Con-
vex Exemplar [4], Silicon Graphics Origin2000 [18], Sequent NU-
MAQ [19], and DataGeneral NUMALiine.

This section describes the design and implementation of Dis-
co. We first describe the key abstractions exported by Disco. We
then describe the implementation of these abstractions. Finally, we



discuss the operating system requirements to run on top of Disco.

4.1 Disco’s Interface

Disco runs multiple independent virtual machines simultaneously
on the same hardware by virtualizing all the resources of the ma-
chine. Each virtual machine can run a standard operating system
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the system.
To match the FLASH machine, the virtual CPUs of

Processors. A\SH machine

Disco provide the abstraction of a MIPS RlOOOO processor. Disco
correctly emulates all instructions, the memory management unit,
and the trap architecture of the processor aliowing unmodified ap-
plications and existing operating systems to run on the virtual ma-
chine. Though required for the FLASH machine, the choice of the
processor was unfortunate for Disco since the R10000 does not sup-
port the complete virtualization of the kernel virtual address space.
Section 4.3.1 details the OS uhausua needed to allow kemel-mode
code to run on Disco.

Besides the emulation of the MIPS processor, Disco extends
the architecture to support efficient access to some processor func-
tions. For example, frequent kernel operations such as enabling and
disabling CPU interrupts and accessing privileged registers can be
performed using load "and store instructions on special addresses.
This interface allows operating systems tuned for Disco to reduce
ihe overheads caused by trap emulation.

Physical Memory. Disco provides an abstraction of main memo-
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dress zero. This organization was selected to match the assumptions
made by the operating systems we run on top of Disco.

Since most commodity operating systems are not designed to
effectively manage the non-uniform memory of the FLASH ma-
chine, Disco uses dynamic page migration and replication to export
a nearly uniform memory access time memory architecture to the
software This allows a non-NUMA aware operating system torun
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of /O devices, such as disks, network interfaces, periodic interrupt
timers, clock, and a console. As with processors and physical mem-
ory, most operating systems assume exclusive access to their /'O
devices, requiring Disco to virtualize each I/O device. Disco must
intercept all communication to and from I/O devices to translate or
emulate the operation.

Because of their importance to the overall performance and ef-
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for the SCSI disk and network devices. Disco virtualizes disks by
providing a set of virtual disks that any virtual machine can mount.
Virtual disks can be configured to support different sharing and per-
sistency models. A virtual disk can either have modifications (i.e.
disk write requests) stay private to the virtual machine or they can
be visible to other virtual machines. In addition, these modifications
can be made persistent so that they survive the shutdown of the vir-
tual machine or non-persisient so that they disappear with each re-
boot.

To support efficient communication between virtual ma-
chines, as well as other real machines, the monitor virtualizes ac-

cess to the networking devices of the underlying system. Each

virtual machine is assioned a distinct link-level address on an inter-
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nal virtual subnet handled by Disco. Besides the standard network
interfaces such as Ethernet and FDDI, Disco supports a special net-
work interface that can handle large transfer sizes without fragmen-
tation. For communication with the world outside the machine,
Disco acts as a gateway that uses the network interfaces of the ma-
chine to send and receive packets.
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4.2 Implementation of Disco
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cessors, Disco is implemented as a multi-threaded sharcd memory
program. Disco differs from existing systems in that careful atten-
tion has been given to NUMA memory placement, cache-aware
data Structures, and interprocessor communication patterns. For ex-
amvle. Disco does not contain linked lists or other data structures
with poor cache behavior. The small size of Disco, about 13,000
lines of code, allows for a higher degree of tuning than is possible
with miliion line operaiing sysiems.

To improve NUMA locality, the small code segment of Disco,
currently 72KB, is replicated into all the memories of FLASH ma-
chine so that all instruction cache misses can be satisfied from the
local node. Machine-wide data structures are partitioned so that the
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memory local to that processor.

For the data structures accessed by multiple processors, very
few locks are used and wait-free synchronization [14] using the
MIPS LL/SC instruction pair is heavily employed. Disco commu-
nicates through shared-memory in most cases. It uses inter-proces-
sor interrupts for specific actions that change the state of a remote
virtual processor, for example TLB shootdowns and posting of an
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like a highly tuned and scalable SPLASH application [27] than like
a general-purpose operating system.

4.2.1 Virtual CPUs

Like previous virtual machine monitors, Disco emulaies the execu-
tion of the virtual CPU by using direct execution on the real CPU,
To schedule a virtual CPU, Disco sets the real machines’ registers
to those of the virtual CPU and jumps to the current PC of the vir-
tual CPU. By using direct execution, most operations run at the
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using direct execution is the detection and fast emulation of those
operations that cannot be safely exported to the virtual machine,
These operations are primarily the execution of priviieged instruc-
tions performed by the operating system such as TLB modification,
and the direct access to physical memory and I/O devices.

For each virtual CPU, Disco keeps a data structure that acts
much like a process table entry in a traditional operating system.
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al CPU when it is not scheduled on a real CPU. To perform the em-
ulation of privileged instructions, Disco additionally maintains the
privileged registers and TLB contents of the virtual CPU in this
structure.

On the MIPS processor, Disco runs in kernel mode with full
access to the machine’s hardware. When control is given to a virtual
machine to run, Disco puts the processor in supervisor mode when
rurmmg the virtual machine’s upcmuug system, and in user mode
otherwise. Supervisor mode allows the operating system to use a
protected portion of the address space (the supervisor segment) but
does not give access to privileged instructions or physical memory.

App)ications and kernel code can however still be directly executed
since Disco emulates the operations that cannot be igsued in super-

visor mode. When a trap such as page fault, system call, or bus error
occurs, the processor traps to the monitor that emulates the effect of
the trap on the currently scheduied virtual processor. This is done
by updating some of the privileged registers of the virtual processor
and jumping to the virtual machine’s trap vector,

Disco contains a simple scheduler that allows the virtual pro-
cessors to be time-shared across the physical processors of the ma-
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support affinity scheduling that increases data locality.
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FIGURE 2. Transparent Page Replication. Disco uses the physical to machine mapping to replicate user and kemel pages. Virtual
pages from VCPUs 0 and 1 of the same virtual machine both map the same physical page of their virtual machine. However, Disco trans-
parently maps each virtual page to a machine page replica that is located on the local node.

4.2.2 Virtual Physical Memory

To virtualize physical memory, Disco adds a level of address trans-
lation and maintains physical-to-machine address mappings. Virtu-
al machines use physical addresses that have memory starting at
address zero and continuing for the size of virtual machine’s mem-
ory. Disco maps these physical addresses to the 40 bit machine ad-
dresses used by the memory system of the FLASH machine.

Disco performs this physical-to-machine translation using the
software-reloaded translation-lookaside buffer (TLB) of the MIPS
processor. When an operating system attempts to insert a virtual-to-
physical mapping into the TLB, Disco emulates this operation by
translating the physical address into the corresponding machine ad-
dress and inserting this corrected TLB entry into the TLB. Once the
TLB entry has been established, memory references through this
mapping are translated with no additional overhead by the proces-
sor.

To quickly compute the corrected TLB entry, Disco keeps a
per virtual machine pmap data structure that contains one entry for
each physical page of a virtual machine. Each pmap entry contains
a pre-computed TLB entry that references the physical page loca-
tion in real memory. Disco merges that entry with the protection
bits of the original entry before inserting it into the TLB. The pmap
entry also contains backmaps pointing to the virtual addresses that
are used to invalidate mappings from the TLB when a page is taken
away from the virtual machine by the monitor.

On MIPS processors, all user mode memory references must
be translated by the TLB but kernel mode references used by oper-
ating systems may directly access physical memory and I/O devices
through the unmapped segment of the kernel virtual address space.
Many operating systems place both the operating system code and
datain this segment. Unfortunately, the MIPS architecture bypasses
the TLB for this direct access segment making it impossible for
Disco to efficiently remap these addresses using the TLB. Having
each operating system instruction trap into the monitor would lead
to unacceptable performance. We were therefore required to re-link
the operating system code and data to a mapped region of the ad-
dress space. This problem seems unique to MIPS as other architec-
tures such as Alpha can remap these regions using the TLB.

The MIPS processors tag each TLB entry with an address
space identifier (ASID) to avoid having to flush the TLB on MMU
context switches. To avoid the complexity of virtualizing the
ASIDs, Disco flushes the machine’s TLB when scheduling a differ-
ent virtual CPU on a physical processor. This approach speeds up
the translation of the TLB entry since the ASID field provided by
the virtual machine can be used directly.
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A workload executing on top of Disco will suffer an increased
number of TLB misses since the TLB is additionally used for all op-
erating system references and since the TLB must be flushed on vir-
tual CPU switches. In addition, each TLB miss is now more
expensive because of the emulation of the trap architecture, the em-
ulation of privileged instructions in the operating systems’s TLB-
miss handler, and the remapping of physical addresses described
above. To lessen the performance impact, Disco caches recent vir-
tual-to-machine translations in a second-level software TLB. On
each TLB miss, Disco’s TLB miss handler first consults the second-
level TLB. If it finds a matching virtual address it can simply place
the cached mapping in the TLB, otherwise it forwards the TLB miss
exception to the operating system running on the virtual machine.
The effect of this optimization is that virtual machines appear to
have much larger TLBs than the MIPS processors.

4.2.3 NUMA Memory Management

Besides providing fast translation of the virtual machine’s physical
addresses to real machine pages, the memory management part of
Disco must also deal with the allocation of real memory to virtual
machines. This is a particularly important task on ccNUMA ma-
chines since the commodity operating system is depending on Dis-
co to deal with the non-uniform memory access times. Disco must
try to allocate memory and schedule virtual CPUs so that cache
misses generated by a virtual CPU will be satisfied from local mem-
ory rather than having to suffer the additional latency of a remote
cache miss. To accomplish this, Disco implements a dynamic page
migration and page replication system [2,7] that moves or replicates
pages to maintain locality between a virtual CPU’s cache misses
and the memory pages to which the cache misses occur.

Disco targets machines that maintain cache-coherence in hard-
ware. On these machines, NUMA management, implemented ei-
ther in the monitor or in the operating system, is not required for
correct execution, but rather an optimization that enhances data lo-
cality. Disco uses a robust policy that moves only pages that will
likely result in an eventual performance benefit [26)]. Pages that are
heavily accessed by only one node are migrated to that node. Pages
that are primarily read-shared are replicated to the nodes most
heavily accessing them. Pages that are write-shared are not moved
because they fundamentally cannot benefit from either migration or
replication. Disco’s policy also limits the number of times a page
can move to avoid excessive overheads.

Disco’s page migration and replication policy is driven by the
cache miss counting facility provided by the FLASH hardware.
FLASH counts cache misses to each page from every physical pro-
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memory footprint of the system.

cessor. Once FLASH detects a hot page, the monitor chooses be-
tween migrating and replicating the hot page based on the cache
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miss counters. To migrate a page, the monitor transparently chang-

es the physical-to-machine mapping. It first invalidates any TLB _

entries mapping the old machine page and then copies the data to a
local machine page. To replicate a page, the monitor must first
downgrade all TLB entries mapping the machine page to ensure
read-only accesses. It then copies the page to the local node and up-
dates the relevant TLB entries mapping the old machine page. The
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Disco maintains a memmap data structure that contains an en-
try for each real machine memory page. To perform the necessary
TLB shootdowns during a page migration or replication, the mem-
map entry contains a list of the virtual machines using the page and
the virtual addresses used to access them. A memmap entry also

contains pointers to any replicated copies of the page.
4.2.4 Virtual 1/0Q Devices

To virmalize access to I/O devices, Disco intercepts all device

from the virtual machine and n\lnnfnn"v forwards them to
irem ne viral macamne anc hemto

the physical devices. Disco could interpose on the programmed in-
put/output (PIOs) from the operating system device drivers by trap-
ping into the monitor and emulating the functionality of the
hardware device assumed by the version of the operating:system we
used. However we found it was much cleaner to simply add special
device drivers into the operating system. Each Disco device defines
a monitor call used by the device driver to pass all command argu-
ments in a single trap.

Devices such as disks and network interfaces include a DMA
map as part of their arguments. Disco must intercept such DMA re-
quests to translate the physical addresses specified by the operating

systems into machine addresses. Disco’s device drivers then inter-
act directly with the physical device.

For dev1ces accessed by a single virtual machine, Disco only
needs to guarantee the exclusivity of this access and translate the
physical memory addresses of the DMA, but does not need to vir-
tualize the I/O resource itself.

The interposition on all DMA requests offers an opportunity
for Disco to share disk and memory resources among virtual ma-
chines. Disco’s copy-on-write disks allow virtual machines to share
both main memory and disk storage resources. Disco’s virtual net-
work devices allow virtual machines to communicate efficiently.
The combination of these two mechanisms, detailed in
Section 4.2.5 and Section 4.2.6, allows Disco to support a system-

wide cache of disk blocks in memory that can be transparently
shared hetween all the virtnal machines.
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4.2.5 Copy-on-write Disks

Disco intercepts every disk request that DMAs data into memory.

omd

w

When a virtual machine requests to read a disk block that is already
in main memory, Disco can process the request without going to
disk. Furthermore, if the disk request is a multxp]e of the mﬂchine S
page size, Disco can process the DMA request by simply mapping
the page into the virtuai machine’s physical memory. In order to
preserve the semantics of a DMA operation, Disco maps the page
read-only into the destination address page of the DMA. Attempts
to modify a shared page will result in a copy-on-write fault handled
internally by the monitor.

Tlcine thic machaniem mniltinla virtn a
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shared disk end up sharing machine memory. The copy- on-writc
semantics means that the virtual machine is unaware of the sharing
with the exception that disk requests can finish nearly instantly,
Consider an environment running multiple virtual machines for
scalability purposes. All the virtual machines can share the same
root disk containing the kernel and application programs. The code
and other read-only data stored on the disk will be DMA-ed into
memory by the first virtual machine that accesses it. auusequcm re-
quests will simply map the page specified to the DMA engine with-
out transferring any data. The result is shown in Figure 3 where all
virtual machines share these read-only pages. Effectively we get the
memory sharing patterns expected of a single shared memory mul-

tinrocecsor onerating svstem even thonoh the gvetam rine multinla
tiprocessor operating system even though the system runs muitipic

independent operating systems.

To preserve the isolation of the virtual machines, disk writes
must be kept private to the virtual machine that issues them. Disco
logs the modified sectors so that the copy-on-write disk is never ac-
tually modified. For persistent disks, these modified sectors would
be logged in a separate disk partition managed by Disco. To simpli-
fy our 1mplementat1on, we only applied the concept of copy-on-
wiite disks to non-persistent disks and kept the modified sectors in
main memory whenever possible.

The implementation of this memory and disk sharing feature
of Disco uses two data structures. For each disk device, Disco main-

tains a B-Tree indexed by the range of disk sectors being requested,
This B-Tree is used to find the machine memory address of the sec-

tors in the global disk cache. A second B-Tree is kept for each disk
and virtual machine to find any modifications to the block made by
that virtual machine. We used B-Trees to efficiently support querics
on ranges of sectors [6].

The copy-on-write mechanism is used for file systems such as
the root disk whose modifications as not intended to be persistent
or shared across virtual machines. For persistent disks such as the
oiie umuumug user llle, Disco enforces t ulat umy a amglc vuluul
machine can mount the disk at any given time, As a result, Disco
does not need to virtualize the layout of the disk. Persistent disks
can be accessed by other virtual machines through a distributed file

system protocol such as NFS.
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The monitor remaps the data page from the driver’s mbuf to the clients buffer cache. This Temap is initiated by the operating system

through a monitor call.

4.2,6 Virtual Network Interface

The copy-on-write mechanism for disks allows the sharing of mem-
ory resources across virtual machines, but does not allow virtual

machines to communicate with each other. To communicate, virtu-

al machines use standard distributed protocols. For example, virtual
machines share files through NFS. As a result, shared data will end
up in both the client’s and server’s buffer cache. Without special at-
tention, the data will be duplicated in machine memory. We de-
signed a virtual subnet managed by Disco that allows virtual
machines to communicate with each other, while avoiding replicat-
ed data whenever possible.

The virtual subnet and n uctwuuuus interfaces of Disco also use
copy-on-write mappings to reduce copying and to allow for memo-
ry sharing. The virtual device uses ethemnet-like addresses and does
not limit the maximum transfer unit (MTU) of packets. A message
transfer sent between virtual machines causes the DMA unit to map
the page read-only into both the sending and receiving virtual ma-
chme s physical address spaces. The virtual network interface ac-
cepts messages that consist of scattered buffer fragments. Our
implementation of the viriual neiwork in Disco and in the operating
system’s device driver always respects the data alignment of the
outgoing message so that properly aligned message fragments that
span a complete page are always remapped rather than copied.

Using this mechanism, a page of data read from disk into the

ile cache of a file server nmnmg in one virtual machine can be
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shared with client programs that request the file using standard dis-
tributed file system protocol such as NFS. As shown in Figure 4,
Disco supports a global disk cache even when a distributed file sys-
tem is used to connect the virtual machines. In practice, the combi-
nation of copy-on-write disks and the access to persistent data
through the specialized network device provides a global buffer
cache that is transparently shared by independent virtual machines.
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machines. Although this reduces the memory footprint, this may
adversely affect data locality as most sharers will access the page
remotely, However, Disco’s page replication policy selectively rep-
licates the few “hot” pages that suffer the most cache misses. Pages
are therefore shared whenever possible and replicated only when

necessary to improve performance

4.3 Running Commodity Operating Systems

The “commodity” operating system we run on Disco is IRIX 5.3, 2
UNIX SVR4 based operating system from Silicon Graphics. Disco
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is however independent of any specific operating system and we
plan to support others such as Windows NT and Linux.

In their support for portability, modern operating systems
present a hardware abstraction level (HAL) that allows the operat-
ing system to be effectively “ported” to run on new platforms. Typ-
ically the HAL of modern operating systems changes with each
new version of a machine while the rest of the system can remain
unchanged. Our experience has been that relatively small changes
to the HAL can reduce the overhead of virtualization and improve
resource usage.

Most of the changes made in IRIX were part of the HAL!, All
of the changes were simple enough that they are unlikely to intro-
duce a bug in the software and did not require a detailed understand-
ing of the internals of IRIX. Although we performed these changes
at the source level as a matter of convenience, many of them were
simple enough to be performed using binary translation or augmen-
tation techniques.

4.3.1 Necessary Changes for MIPS Architecture

Virtual processors running in supervisor mode cannot efficiently
access the KSEGO segment of the MIPS virtual address space, that
always bypasses the TLB. Unfortunately, many MIPS operating
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KSEGO segment. As a result, we needed to relocate the unmapped
segment of the virtual machines into a portion of the mapped super-
visor segment of the MIPS processor. This allowed Disco to emu-
late the direct memory access efficiently using the TLB. The need
for relocating the kernel appears to be unigue to MIPS and is not
present in other modern archltecture such as Alpha, x86, SPARC,
and PowerPC.

Making these changes to IRIX required changing two header
files that describe the virtual address space layout, changing the
linking options, as well as 15 assembly statements in locore.s. Un-
fortunately, this meant that we needed to re-compile and re-link the

IRIX kemel to run on Disco.
4.3.2 Device Drivers

Disco’s monitor call interface reduces the complexity and overhead

of accessing I/O devices. We implemented UART SCSI disks, and

1. Unlike other operating systems, IRIX is not structured with a well-
defined HAL. In this paper, the HAL includes all the platform and
processor-specific functions of the operating system.



ethernet drivers that match this interface. Since the monitor call in-
terface provides the view of an idealized device, the implementa-
tion of these drivers was straightforward. Since kernels are normal-
ly designed to run with different device drivers, this kind of change
can be made without the source and with only a small risk of intro-
ducing a bug.

The complexity of the interaction with the specific devices is
left to the virtual machine monitor. Fortunately, we designed the
virtual machine monitor’s internal device driver interface to simpli-
fy the integration of existing drivers written for commodity operat-
ing systems. Disco uses IRIX’s original device drivers.

4.3.3 Changes to the HAL

Having to take a trap on every privileged register access can cause
significant overheads when running kernel code such as synchroni-
zation routines and trap handlers that frequently access privileged

registers. To reduce this overhead, we patched the ‘HAL of IRIX to

convert these frequently used privileged instructions to use non-
trapping load and store instructions to a special page of the address
space that contains these registers. This optimization is only applied
to instructions that read and write privileged registers without caus-
ing other side-effects. Although for this experiment we performed
the patches by hand to only a few critical locations, the patches
could easily be automatically applied when the privileged instruc-
tion first generates a trap. As part of the emulation process, Disco
could overwrite certain instructions with the special load and store
so it would not suffer the overhead of the trap again.

To help the monitor make better resource management deci-
sjons, we have added code to the HAL to pass hints to the monitor
giving it higher-level knowledge of resource utilization. We insert-
ed a small number of monitor calls in the physical memory manage-
ment module of the operating systems. The first monitor call
requests a zeroed page. Since the monitor must clear pages to en-
sure the isolation of virtual machines anyway, the operating system
is freed from this task. A second monitor callinforms Disco that a
page has been put on the operating;system’s freelist without a
chance of reclamation, so that Disco can immediately reclaim the
memory.

To improve the utilization of processor resources, Disco as-
signs special semantics to the reduced power consumption mode of
the MIPS processor. This mode is used by the operating system
whenever the system is idle. Disco will deschedule the virtual CPU
until the mode is cleared or an interrupt is posted. A monitor call in-
serted in the HAL’s idle loop would have had the same effect.

4.3.4 Other Changes to IRIX

For some optimizations Disco relies on the cooperation of the oper-
ating system. For example, the virtual network device can only take
advantage of the remapping techniques if the packets contain prop-
erly aligned, complete pages that are not written. We found that the
operating system’s networking subsystem naturally meets most of
the requirements. For example, it preserves the alignment of data
pages, taking advantage of the scatter/gather options of networking
devices. Unfortunately, IRIX’s mbuf management is such that the
data pages of recently freed mbufs are linked together using the first
word of the page. This guarantees that every packet transferred by
the monitor’s networking device using remaps will automatically
trigger at least one copy-on-write fault on the receiving end. A sim-
ple change to the mbuf freelist data structure fixed this problem.
The kemnel implementation of NFS always copies data from
the incoming mbufs to the receiving file buffer cache, even when
the packet contained un-fragmented, properly aligned pages. This
would have effectively prevented the sharing of the file buffer
cache across virtual machines. To have clients and servers transpar-
ently share the page, we specialized the call to bcopy to a new

remap function offered by the HAL. This remap function has the sc-
mantics of a bcopy routine but uses a monitor call to remap the page
whenever possible. Figure 4 shows how a data page transferred dur-
ing an NFS read or write call is first remapped from the source vir-
tual machine to the destination memory buffer (mbuf) page by the
monitor’s networking device, and then remapped into its final loca-
tion by a call to the HAL’s remap function.

"4.4 SPLASHOS: A Specialized Operating System

The ability to run a thin or specialized operating system allows Dis-
co to support large-scale parallel applications that span the entire
machine. These applications may not be well served by a full func-
tion operating system. In fact, specialized operating systems such as
Puma [24] are commonly used to run scientific applications on par-
allel systems. .

-To illustrate this point, we developed a specialized library op-
erating system [11], “SPLASHOS”, that runs directly on top of Dis«
co. SPLASHOS contains the services needed to run SPLASH-2
applications [27]: thread creation and synchronization routines,
“libc” routines, and an NFS client stack for file 1/O. The application
is linked with the library operating system and runs in the same ad-
dress space as the operating system. As a result, SPLASHOS does
not need to support a virtual memory subsystem, deferring all page
faulting responsibilities directly to Disco.

~ Although one might find SPLASHOS to be an overly simplis-
tic and limited operating system if it were to run directly on hard-
ware, the ability to run it in a virtual machine alongside commodity
operating systems offers a powerful and attractive combination.

5 Experimental Results

We have implemented Disco as described in the previous section
and performed a collection of experiments to evaluate it. We de-
scribe our simulation-based experimental setup in Section 5.1, The
first set of experiments presented in Sections 5.2 and 5.3 demon-
strate that Disco overcomes the traditional problems associated
with virtual machines, such as high overheads and poor resource
sharing. We then demonstrate in Sections 5.4 and 5.5 the benefits
of using virtual machines, including improved scalability and data
locality.

5.1 Experimental Setup and Workloads

Disco targets the FLASH machine, which is unfortunately not yet
available. As a result, we use the SimOS [22] machine simulator to
develop and evaluate Disco. SimOS is a machine simulator that
models the hardware of MIPS-based multiprocessors in enough de-
tail to run essentially unmodified system software such as the IRIX
operating system and the Disco monitor. For this study, we config-
ured SimOS to resemble a large-scale multiprocessor with perfor-
mance characteristics similar to FLASH. Although SimOS contains
simulation models of FLASH’s MIPS R10000 processors, these
simulation models are too slow for the workloads that we chose to
study. As a result, we model statically scheduled, non-superscalar
processors running at twice the clock rate, These simpler pipelines
can be modelled one order of magnitude faster than the R10000,
The processors have the on-chip caches of the MIPS R10000
(32KB split instruction/data) and a IMB board-level cache. In the
absence of memory system contention, the minimum latency of a
cache miss is 300 nanoseconds to local memory and 900 nariosec-
onds to remote memory.

Although SimOS allows us to run realistic workloads and ex-
amine their behavior in detail with its non-intrusive annotation
mechanism, the simulation slowdowns prevent us from examining
long running workloads in detail. Using realistic but short work-
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Workload Environment Description Characteristics Ex;ic:lt;on
Parallel compilation (-J2) of the | Multiprogrammed, short-lived,
Pmake Software Development GNU chess application system and I/O intensive processes 3.9sec
s Verilog simulation (Chronologics | Multiprogrammed, long running
Engineering { Hardware Development VCS) + machine simulation processe: 3.5 sec
Splash Scientific Computing Raytrace from SPLASH-2 Parallel applications 12.9 sec
. Sybase Relational Database . . .
Database Commercial Database Server decision support workload Single memory intensive process 2.0 sec

Table 1. Workloads. Each workload is scaled differently for the uniprocessor and multiprocessor experiments. The reported execution
time is for the uniprocessor workloads running on IRIX without Disco. The execution time does not include the time to boot the operating,
ramp-up the applications and enter a steady execution state. This setup time is at least two orders of magnitude longer and performed

using SimOS’s fast emulation mode.

loads, we were able to study issues like the CPU and memory over-
heads of virtualization, the benefits on scalability, and NUMA
memory management. However, studies that would require long
running workloads, such as those fully evaluating Disco’s resource
sharing policies, are not possible in this environment and will hence
have to wait until we have a real machine.

Table 1 lists the workloads of this study together with their
base simulated execution time., The workloads were chosen to be
representative of four typical uses of scalable compute servers. Al-
though the simulated execution times are small, the SimOS envi-
ronment allowed us to study the workload’s behavior in great detail
and determine that the small execution regions exhibit similar be-
havior to longer-running worklaods. We also used the fast mode of
SimOS to ensure that the workloads did not include any cold start
effects.

5.2 Execution Overheads

To evaluate the overheads of running on Disco, we ran each work-
load on a uniprocessor, once using IRIX directly on the simulated
hardware, and once using Disco running IRIX in a single virtual
machine on the same hardware. Figure 5 shows this comparison.
Overall, the overhead of virtualization ranges from a modest 3% for

Raytrace to a high of 16% in the pmake and database workloads.
For the compute-bound engineering and Raytrace workloads, the
overheads are mainly due to the Disco trap emulation of TLB reload
misses. The engineering and database workloads have an excep-
tionally high TLB miss rate and hence suffer large overheads. Nev-
ertheless, the overheads of virtualization for these applications are
less than 16%.

The heavy use of OS services for file system and process cre-
ation in the pmake workload makes it a particularly stressful work-
load for Disco. Table 2 shows the effect of the monitor overhead on
the top OS services. From this table we see the overheads can sig-
nificantly lengthen system services and trap handling. Short run-
ning services such as the IRIX quick page fault handler, where the
trap overhead itself is a significant portion of the service, show
slowdowns over a factor of 3. Even longer running services such as
execve and open system call show slowdowns of 1.6.

These slowdowns can be explained by the common path to en-
ter and leave the kernel for all page faults, system calls and inter-
rupts. This path includes many privileged instructions that must be
individually emulated by Disco. A restructuring of the HAL of
IRIX could remove most of this overhead. For example, IRIX uses
the same TLB wired entry for different purposes in user mode and
in the kernel. The path on each kernel entry and exit contains many

Relative Execution Time on Disco
% of Avg Time 9 0 28 a
Operating System System per Slowdown - § ES . §n§ SR =3
Service Time Invocation on g El = S 223 B = B
(IRIX) (IRIX) Disco 22 | RE|OCEE| EF | 49
LR HI
DEMAND_ZERO 30% 21 pus 142 043 0.21 0.16 047 0.16
QUICK_FAULT 10% Sus 3.17 1.27 0.80 0.56 0.00 0.53
open 9% 424s 1.63 1.16 0.08 0.06 0.02 0.30
UTLB_MISS 7% 0.035ps 1.35 0.07 1.22 0.05 0.00 0.02
write 6% 12us 2.14 1.01 0.24 0.21 0.31 0.17
read 6% 23 ps 1.53 1.10 0.13 0.09 0.01 0.20
execve 6% 437 us 1.60 0.97 0.03 0.05 0.17 0.40

Table 2. Service Breakdown for the Pmake workload. This table breaks down the overheads of the virtualization for the seven top
kernel services of the pmake workload. DEMAND_ZERO is demand zero page fault, QUICK_FAULT, is stow TLB refill, UTLB_MISS
is a fast TLB refill. Other than the UTLB_MISS service, the IRIX and IRIX on Disco configurations request the same number of services
of each category. For each service, the execution time is expressed as a fraction of the IRIX time and separates the time spend in the
kernel, emulating TLB writes and privileged instructions, performing monitor call and emulating the unmapped segments. The slowdown
column is the sum of the relative execution times and measures the average slowdown for each service.
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FIGURE 5. Overhead of Virtualization. The figure compares,
for four uniprocessor workloads, the execution time when running
IRIX directly on the simulated hardware with IRIX running in a
Disco virtual machine. The execution time is separated between
the time spent in user programs, the IRIX kernel, Disco, and the
idle loop.

privileged instructions that deal exclusively with this feature and
are individually emulated.

We also notice the relatively high overhead of servicing kernel
TLB-faults that occur since Disco runs IRIX in mapped addresses
rather than the unmapped addresses used when running directly on
the machine. This version of Disco only mapped 4KB page pairs
into the TLB. The use of larger pages, supported by the MIPS TLB,
could significantly reduce this overhead. Even with these large
slowdowns, the operating system intensive pmake workload with
its high trap and system call rate has an overhead of only 16%.

Figure S also shows a reduction in overall kemnel time of some
workloads. Some of the work of the operating system is being han-
dled directly by the monitor. The reduction in pmake is primarily
due to the monitor initializing pages on behalf of the kernel and
hence suffering the memory stall and instruction execution over-
head of this operation. The reduction of kernel time in Raytrace,
Engineering and Database workloads is due to the monitor’s sec-
ond-level TLB handling most TLB misses.

5.3 Memory Overheads

To evaluate the effectiveness of Disco’s transparent memory shar-
ing and quantify the memory overheads of running multiple virtual
machines, we use a single workload running under six different sys-
tem configurations. The workload consists of eight different in-
stances of the basic pmake workload. Each pmake instance reads
and writes files from a different disk. In all configurations we use
an eight processor machine with 256 megabytes of memory and ten
disks.

The configurations differ in the number of virtual machines
used and the access to the workload file systems. The first configu-
ration (IRIX) runs IRIX on the bare hardware with all disks local.
The next four configurations split the workload across one (1VM),
two (2VMs), four (4VMs), and eight virtual machines (8VMs).
Each VM has the virtual resources that correspond to an equal frac-
tion of the physical resources. As a result, the total virtual processor
and memory resources are equivalent to the total physical resources
of the machine, i.e. eight processors and 256 MB of memory. For
example, the 4VMs configuration consists of dual-processor virtual
machines, each with 64 MB of memory. The root disk and work-
load binaries are mounted from copy-on-write disks and shared
among all the virtual machines. The workload file systems are
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FIGURE 6. Data Sharing in Disco. This figure compares the
memory footprints of the different configurations of Section 5.3
which run the pmake workload. For each configuration, “V*"
breaks down the virtual footprint of the system and “M" and actual
machine memory footprint. The virtual footprint is equivalent to
the amount of memory required in the absence of memory sharing
optimizations.

mounted from different private exclusive disks.

The last configuration runs eight virtual machines but accesses
workload files over NFS rather than from private disks. One of the
eight virtual machines also serves as the NFS server for all file sys-
tems and is configured with 96 megabytes of memory. The seven
other virtual machines have only 32MB of memory. This results in
more memory configured to virtual machines than is available on
the real machine. This workload shows the ability to share the file
cache using standard distributed system protocols such as NFS.

Figure 6 compares the memory footprint of each configuration
at the end of the workload. The virtual physical footprint (V) is the
amount of memory that would be needed if Disco did not support
any sharing across virtual machines. The machine footprint (M) is
the amount of memory actually needed with the sharing optimiza-
tions. Pages are divided between the IRIX data structures, the IRIX
text, the file system buffer cache and the Disco monitor itself.

Overall, we see that the effective sharing of the kernel text and
buffer cache limits the memory overheads of running multiple vir-
tual machines. The read-shared data is kept in a single location in
memory.

The kernel private data is however not shareable across virtual
machines. The footprint of the kernel private data increases with the
number of virtual machines, but remains overall small. For the cight
virtual machine configuration, the eight copies of IRIX's data struc-
tures take less than 20 megabytes of memory.

In the NFS configuration, the virtual buffer cache is larger than
the comparable local configuration as the server holds a copy of all
workload files. However, that data is transparently shared with the
clients and the machine buffer cache is of comparable size to the
other configurations. Even using a standard distributed file system
such as NFS, Disco can maintain a global buffer cache and avoid
the memory overheads associated with multiple caching of data.

5.4 Scalability

To demonstrate the scalability benefits of using virtval machine
monitors we ran the pmake workload under the six configurations
described in the previous section. IRIXS.3 is not a NUMA-aware
kernel and tends to allocate its kernel data structures from a single
node of FLASH causing large hot-spots. To compensate for this, we
changed the physical memory layout of FLASH so that machine
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FIGURE 7. Workload Scalability Under Disco. The perfor-
mance of the pmake and radix workloads on an eight-processor
ccNUMA machine is normalized to the execution time running
IRIX on the bare hardware. Radix runs on IRIX directly on top of
the hardware and on a specialized OS (SPLASHOS) on top of
Disco in a single virtual machine. For each workload the execu-
tion is broken down into user time, kernel time, time synchroniza-
tion time, monitor time, and the idle loop. All configurations use
the same physical resources, eight processors and 256MB of
memory, but use a different number of virtual machines.

pages are allocated to nodes in a round-robin fashion. This round-
robin allocation eliminates hot spots and results in significantly bet-
ter performance for the IRIX runs. Since Disco is NUMA-aware,
we were able to use the actual layout of machine memory, which al-
locates consecutive pages to each node. To further simplify the
comparison, we disabled dynamic page migration and replication
for the Disco runs.

Figure 7 shows the execution time of each workload. Even at
just eight processors, IRIX suffers from high synchronization and
memory system overheads for system-intensive workloads such as
this. For example, about one guarter of the overall time is spent in
the kemel synchronization routines and the 67% of the remaining
kernel time is spent stalled in the memory system on communica-
tion misses. The version of IRIX that we used has a known primary
scalability bottleneck, memlock, the spinlock that protects the mem-
ory management data structures of IRIX [23]. Other operating sys-
tems such as NT also have comparable scalability problems, even
with small numbers of processors [21].

Using a single virtual machine leads to higher overheads than
in the comparable uniprocessor Pmake workload. The increase is
primarily due to additional idle time. The execution of the operating
system in general and of the critical regions in particular is slower
on top of Disco, which increases the contention for semaphores and
spinlocks in the operating system. For this workload, the increased
idle time is due to additional contention on certain semaphores that
protect the virtual memory subsystem of IRIX, forcing more pro-
cesses to be descheduled. This interaction causes a non-linear effect
in the overheads of virtualization.

However, partitioning the problem into different virtual ma-
chines significantly improves the scalability of the system. With
only two virtual machines, the scalability benefits already outweigh
the overheads of the virtualization. When using eight virtual ma-
chines, the execution time is reduced to 60% of its base execution
time, primarily because of a significant reduction in the kernel stall
time and kernel synchronization.

We see significant performance improvement even when ac-
cessing files using NFS. In the NFS configuration we see an in-
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FIGURE 8. Performance Benefits of Page Migration and
Replication. For each workload, the figure compares the execu-
tion time of IRIX on NUMA, IRIX on Disco on NUMA with page
migration and replication, and IRIX on an bus-based UMA, The
execution time is divided between instruction execution time, lo-
cal memory stall time, remote memory stall time, and Disco over-
head. The percentage of cache misses satisfied locally is shown
below each bar.

crease in the idle time that is primarily due to the serialization of
NFS requests on the single server that manages all eight disks. Even
with the overheads of the NFS protocol and the increase in idle
time, this configuration executes faster than the base IRIX time.

The other workload of Figure 7 compares the performance of
the radix sorting algorithm, one of the SPLASH-2 applications [27].
Radix has an unfortunate interaction with the lazy evaluation poli-
cies of the IRIX virtual memory system. IRIX defers setting up the
page table entries of each parallel thread until the memory is
touched by the thread. When the sorting phase starts, all threads suf-
fer many page faults on the same region causing serialization on the
various spinlocks and semaphores used to protect virtual memory
data structures. The contention makes the execution of these traps
significant in comparison to-the work Radix does for each page
touched. The result is Radix spends one half of its time in the oper-
ating system.

Although it would not have been difficult to modify Radix to
setup its threads differently to avoid this problem, other examples
are not as easy to fix. Rather than modifying Radix, we ran it on top
of SPLASHOS rather than IRIX. Because it does not manage virtu-
al memory, SPLASHOS does not suffer from the same perfor-
mance problems as IRIX. Figure 7 shows the drastic performance
improvements of running the application in a specialized operating
system (on top of Disco) over using a full-blown operating system
(without Disco). Both configurations suffer from the same number
of page faults, whose processing accounts for most of the system
time. This system time is one order of magnitude larger for IRIX
than it is for SPLASHOS on top of Disco. The NUMA-aware allo-
cation policy of Disco also reduces hot spots and improves user stall
time. i

5.5 Dynamic Page Migration and Replication

To show the benefits of Disco’s page migration and replication im-
plementation, we concentrate on workloads that exhibit poor mem-
ory system behavior, specifically the Engineering and Raytrace
workloads. The Engineering workload consists of six Verilog sim-
ulations and six memory system simulations on eight processors of
the same virtual machine. The Raytrace workload spans 16 proces-
sors. Because Raytrace’s largest available data set fully fits in a



Engineering Raytrace
Action -
num/sec | avg time | num/sec | avg time
Migration 2461 67 pis 505 102 ps
Replication 2208 57 us 2671 73 ps

Table 3. Action taken on hot pages. This table shows the num-

ber of migrations and replications per second and their average la-
tency for the two workloads.
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IMB cache, we ran the Raytrace experiments with a 256KB cache
to show the impact of data locality.

Figure 8 shows the overall reduction in execution time of the
warklaad Easch warklaad ic min nnder IRIX  IRIX on Disco with

migration and replication, and IRIX on a UMA memory system.
The UMA memory system has a latency of 300ns equivalent to the
local latency of the NUMA machine. As a result, the performance
on the UMA machine determines a lower bound for the execution
time on the NUMA machine. The comparison between Disco and
the NUMA IRIX run shows the benefits of page migration and rep-
lication while the comparison with the UMA IRIX run shows how
close Disco got to completely hiding the NUMA memory system
from the workload.

Disco achieves significant performance improvements by en-
hancing the memory locality of these workloads. The Engineeririg
workload sees a 33% performance improvement while Raytrace
gets a 38% improvement. Both user and kernel modes see a sub-
stantial reduction in remote stall time. Disco increases data locality
by satisfying a large fraction of the cache misses from local memo-
ry with only a small increase in Disco’s overhead.

Although Disco cannot totally hide all the NUMA memory la-
tencies from the kernel, it does greatly improve the situation. Com-
paring Disco’s performance with that of the optimistic UMA where
all cache misses are satisﬁed in 300 nanoseconds, Disco comes
within 40% for the E Lnsmcpuus woikload and 26% for .\ajtraw.

Qur implementation of page migration and replication in Dis-
co is significantly faster than a comparable kernel
implementation [26]. This improvement is due to Disco’s stream-
lined data structures and optimized TLB shootdown mechanisms.
As aresult, Disco can be more aggressive in its policy decisions and
provide better data locality. Table 3 lists the frequency and latency
of page migrations and replications for both workloads.

6 Related Work

We start by comparing Disco’s approach to building system soft-
ware for large-scale shared-memory multiprocessors with other re-
search and commercial projects that target the same class of
machines. We then compare Disco to virtual machine monitors and

software structuring technioues, Fvnn"v we com-
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to other system
sys curnng ©ecr

o other 143

pare our implementation of dynamic page migration and rephcatron
with previous work.

6.1 System Software for Scalable Shared Memory
Machines »

Two opposite approaches are currently being taken to deal with the
system software challenges of scalable shared-memory multipro-
cessors. The first one is to throw a large OS development effort at
the problem and effectively address these challenges in the operat-
ing system. Examples of this approach are the Hive [5] and Hurri-
cane [25] research prototypes and the Cellular-IRIX system
recently announced by SGI. These multi-kemel operating sysiems
handle the scalability of the machine by partitioning resources into
“cells” that communicate to manage the hardware resources effi-
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ciently and export a single system image, effectively hiding the dis-
tributed system from the user, In Hive, the cells are also uged to
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contain faults within cell boundaries. In addmon, these systems in«
corporate resource allocators and schedulers for processors and
memory that can handie the scaiability and the NUMA aspects of
the machine. This approach is innovative, but requires a large de-
velopment effort.

The virtual machines of Disco are similar to the cells of Hive
and Cellular-IRIX in that they support scalability and form systcm
sofiware fault containment boundaries. Like these systems, Disco
can balance the allocation of resources such as processors and
memory between these units of scalability. Also like these systcms,
Disco handles the NUMA memory management by doing careful
page migration and rephcatlon The benefit of Disco over the OS

intensive alr;prnm‘h ig in the reduction in OS dpvnlnpmnnt effort, It
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provides a large fraction of the benefits of these systems at a frac-
tion of the cost. Unlike the OS-intensive approach that is tied to a
particular operating system, Disco is independent of any particular
0OS, and can even support different OSes concurrently.

The second approach is to statically partition the machine and
run multiple, independent operating systems that use distributed
system protocols to export partial single system image to the us-
ers. An cxampre of this approach is the Sun Entcrpnsewuw ma-
chine that handles software scalability and hardware reliability by
allowing users to hard partition the machine into independent fail-
ure units each running a copy of the Solaris operating system. Users

still benefit from the tight coupling of the machine, but cannot dy-
namically adapt the partitioning to the load of the different units.
This approach favors low 1mplementat|on cost and compatibility
over innovation.

Like the hard partitioning approach, Disco oniy requires min-
imal OS changes. Although short of providing a full single system
image, both systems build a partial single system image using stan-
dard distributed systems protocols. For example, a single file sys-
tem image is built using NFS. A single system administration
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Disco by the use of shared copy-on-write disks that are shared by
many virtual machines.

Yet, unlike the hard partitioning approach, Disco can share all
the resources between the virtual machines and supports highly dy-
namic reconfiguration of the machine. The support of a shared buff-
er cache and the ability to schedule all the resources of the machine
between the virtual machines allows Disco to excel on workloads
that WOUI(] noi pcrrorm wcu Witll a ICldlIVCly bldllb pamuomn;,.
Furthermore, Disco provides the ability for a single application to
span all resources of the machine using a specialized scalable OS.

Digital’s announced Galaxies operating system, a multi-kemel
version of VMS, also partitions the machine relatively statically

1iks the Qun machina with tha additinnal cnnnart far coamant delv.
1K€ (NC Sun macnine, with e aGaiiichal sUpport 101 segment Griv-

ers that allow applications to share memory across partitions, Gal-
axies reserves a portion of the physical memory of the machine for
this purpose. A comparable implementation of application-ievel
shared 'memory between virtual machines would be simple and
would not require having to reserve memory in advance.

Disco is a compromise between the OS-intensive and the OS-
light approaches. Given an infinite OS development budget, the OS
is the right place to deal with issues such as resource management.
The high-level knowledge and greater control available in the oper-
ating system can allow it to export a single system image and devel-
op better resource management mechanisms and policies.
Fortunately, Disco is capable of gradually getting out of the way as

tha NQ {mnrrvac Nnarating quctame with imnravad conlability snn
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just request larger virtual machines that manage more of the ma-
chine’s resources. Disco provides an adequate and low-cost solu-
tion that enables a smooth transition and maintains compatibility
with commodity operating systems.



6.2 Virtual Machine Monitors

Disco is a virtual machine'monitor that implements in software a
virtual machine identical to the underlying hardware. The approach
itself is far from being novel. Golberg’s 1974 survey paper [13] lists
over 70 research papers on the topic and IBM’s VM/370 [15] sys-
tem was introduced in the same period. Disco shares the same ap-
proach and features as these systems, and includes many of the
same performance optimizations as VM/370 [8]. Both allow the si-
multaneous execution of independent operating systems by virtual-
izing all the hardware resources. Both can attach I/O devices to
single virtual machines in an exclusive mode. VM/370 mapped vir-
tual disks to distinct volumes (partitions), whereas Disco has the
notion of shared copy-on-write disks. Both systems support a com-
bination of persistent disks and temporary disks. Interestingly,
Creasy argues in his 1981 paper that the technology developed to
interconnect virtual machines will later allow the interconnection of
real machines [8]. The opposite occurred and Disco benefits today
from the advances in distributed systems protocols.

The basic approach used in Disco as well as many of its per-
formance optimizations were present in VM/370 and other virtual
machines. Disco differs in its support of scalable shared-memory
multiprocessors, handling of modern operating systems, and the
transparent sharing capabilities of copy-on-write disks and the glo-
bal buffer cache.

The idea of virtual machines remains popular to provide back-
ward compatibility for legacy applications or architectures. Mi-
crosoft’s Windows 95 operating system [16] uses virtual machines
to run older Windows 3.1 and DOS applications. Disco differs in
that it runs all the system software in a virtual machine and not just
the legacy applications. DAISY [10] uses dynamic compilation
techniques to run a single virtual machine with a different instruc-
tion set architecture than the host processor. Disco exports the same
instruction set as the underlying hardware and can therefore use di-
rect execution rather than dynamic compilation.

Virtual machine monitors have been recently used to provide
fault-tolerance to sensitive applications [3]. Bressoud and
Schneider’s system virtualizes only certain resources of the ma-
chine, specifically the interrupt architecture. By running the OS in
supervisor mode, it disables direct access to I/O resources and phys-
ical memory, without having to virtualize them. While this is suffi-
cient to provide fault-tolerance, it does not allow concurrent virtual
machines to coexist.

6.3 Other System Software Structuring Techniques

As an operating system structuring technique, Disco could be de-
scribed as a microkemel with an unimaginative interface. Rather
than developing the clean and elegant interface used by microker-
nels, Disco simply mirrors the interface of the raw hardware. By
supporting different commodity and specialized operating systems,
Disco also shares with microkernels the idea of supporting multiple
operating system personalities [1].

It is interesting to compare Disco with Exokernel [11], a soft-
ware architecture that allows application-level resource manage-
ment. The Exokernel safely multiplexes resources between user-
level library operating systems. Both Disco and Exokemel support
specialized operating systems such as ExOS for the Aegis exoker-
nel and SplashOS for Disco. These specialized operating systems
enable superior performance since they are freed from the general
overheads of commodity operating systems. Disco differs from Ex-
okernel in that it virtualizes resources rather than multiplexes them,
and can therefore run commodity operating systems without signif-
icant modifications.

The Fluke system [12] uses the virtual machine approach to
build modular and extensible operating systems. Recursive virtual
machines are implemented by their nested process model, and effi-
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ciency is preserved by allowing inner virtual machines to directly
access the underlying microkemel of the machine. Ford et al. show
that specialized system functions such as checkpointing and migra-
tion require complete state encapsulation. Like Fluke, Disco totally
encapsulates the state of virtual machines, and can therefore trivial-
ly implement these functions.

6.4 ccNUMA Memory Management

Disco provides a complete ccNUMA memory management facility
that includes page placement as well as a dynamic page migration
and page replication policy. Dynamic page migration and replica-
tion was first implemented in operating systems for machines that
were not cache-coherent, such as the IBM Ace [2] or the BBN But-
terfly [7]. In these systems, migration and replication is triggered by
page faults and the penalty of having poor data locality is greater
due to the absence of caches.

The implementation in Disco is most closely related to our
kemel implementation in [26]. Both projects target the FLASH
multiprocessor. Since the machine supports cache-coherency, page
movement is only a performance optimization. Our policies are de-
rived from this earlier work. Unlike the in-kernel implementation
that added NUMA awareness to an existing operating system, our
implementation of Disco was designed with these features in mind
from the beginning, resulting in lower overheads.

7 Conclusions

This paper tackles the problem.of developing system software for
scalable shared memory multiprocessors without a massive devel-
opment effort. Our solution involves adding a level of indirection
between commodity operating systems and the raw hardware. This
level of indirection uses another old idea, virtual machine monitors,
to hide the novel aspects of the machine such as its size and
NUMA-ness.

In a prototype implementation called Disco, we show that
many of the problems of traditional virtual machines are no longer
significant. Our experiments show that the overheads imposed by
the virtualization are modest both in terms of processing time and
memory footprint. Disco uses a combination of innovative emula-
tion of the DMA engine and standard distributed file system proto-
cols to support a global buffer cache that is transparently shared
across all virtual machines. We show how the approach provides a
simple solution to the scalability, reliability and NUMA manage-
ment problems otherwise faced by the system software of large-
scale machines.

Although Disco was designed to exploit shared-memory mul-
tiprocessors, the techniques it uses also apply to more loosely-cou-
pled environments such as networks of workstations (NOW).
Operations that are difficult to retrofit into clusters of existing op-
erating systems such as checkpointing and process migration can be
easily supported with a Disco-like monitor. As with shared-memo-
ry multiprocessors, this can be done with a low implementation cost
and using commodity operating systems.

This return to virtual machine monitors is driven by a current
trend in computer systems. While operating systems and applica-
tion programs continue to grow in size and complexity, the ma-
chine-level interface has remained fairly simple. Software written
to operate at this level remains simple, yet provides the necessary
compatibility to leverage the large existing body of operating sys-
tems and application programs. We are interested in further explor-
ing the use of virtual machine monitors as a way of dealing with the
increasing complexity of modern computer systems.
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