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In this paper we examine the problem of extending modem operat- 
ing systems to run efficiently on large-scale shared memory multi- 
processors without a large implementation effort. Our approach 
brings back an idea popular in the 197Os, virtual machine monitors. 
We use virtual machines to run multiple commodity operating sys- 
tems on a scalable multiprocessor. This solution addresses many of 
the challenges facing the system software for these machines. We 
demonstrate our approach with a prototype called Disco that can 
run multiple copies of Silicon Graphics’ IRIX operating system on 
a multiprocessor. Our experience shows that the overheads of the 
monitor are small and that the approach provides scalability as well 
as the ability to deal with the non-uniform memory access time of 
these systems. To reduce the memory overheads associated with 
running multiple operating systems, we have developed techniques 
where the virtual machines transparently share major data struc- 
tures such as the program code and the file system buffer cache. We 
use the distributed system support of modem operating systems to 
export a partial single system image to the users. The overall solu- 
tion achieves most of the benefits of operating systems customized 
for scalable multiprocessors yet it can be achieved with a signifi- 
cantly smaller implementation effort. 

1 Introduction 
Scalable computers have moved from the research lab to the mar- 
ketplace. Multiple vendors are now shipping scalable systems with 
configurations in the tens or even hundreds of processors. Unfortu- 
nately, the system software for these machines has often trailed 
hardware in reaching the functionality and reliability expected by 
modem computer users. 

Operating systems developers shoulder much of the blame for 
the inability to deliver on the promises of these machines. Extensive 
modifications to the operating system are required to efficiently 
support scalable machines. The size and complexity of modem op- 
erating systems have made these modifications a resource-intensive 
undertaking. 

In this paper, we present an alternative approach for construct- 
ing the system software for these large computers. Rather than mak- 
ing extensive changes to existing operating systems, we insert an 
additional layer of software between the hardware and operating 
system. This layer acts like a virtual machine monitor in that multi- 
ple copies of “commodity” operating systems can be run on a single 
scalable computer. The monitor also allows these commodity oper- 
ating systems to efficiently cooperate and share resources with each 
other. The resulting system contains most of the features of custom 
scalable operating systems developed specifically for these ma- 
chines at only a fraction of their complexity and implementation 
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cost. The use of commodity operating systems leads to systems that 
are both reliable and compatible with the existing computing base. 

To demonstrate the approach, we have constructed a prototype 
system targeting the Stanford FLASH shared memory multiproces- 
sor [ 171, an experimental cache coherent non-uniform memory ar- 
chitecture (ccNUMA) machine. The prototype, called Disco, 
combines commodity operating systems not originally designed for 
such large-scale multiprocessors to form a high performance sys- 
tem software base. 

Disco contains many features that reduce or eliminate the 
problems associated with traditional virtual machine monitors. Spe- 
cifically, it minimizes the overhead of virtual machines and enhanc- 
es the resource sharing between virtual machines running on the 
same system. Disco allows the operating systems running on differ- 
ent virtual machines to be coupled using standard distributed sys- 
tems protocols such as NFS and TCP/IP. It also allows for efficient 
sharing of memory and disk resources between virtual machines. 
The sharing support allows Disco to maintain a global buffer cache 
transparently shared by all the virtual machines, even when the vir- 
tual machines communicate through standard distributed protocols. 

Our experiments with realistic workloads on a detailed simu- 
lator of the FLASH machine show that Disco achieves its goals. 
With a few simple modifications to an existing commercial operat- 
ing system, the basic overhead of virtualization is at most 16% for 
all our uniprocessor workloads. We show that a system with eight 
virtual machines can run some workloads 40% faster than on a 
commercial symmetric multiprocessor operating system by in- 
creasing the scalability of the system software, without substantial- 
ly increasing the system’s memory footprint. Finally, we show that 
page placement and dynamic page migration and replication allow 
Disco to hide the NUMA-ness of the memory system, improving 
the execution time by up to 37%. 

In Section 2, we provide a more detailed presentation of the 
problem being addressed. Section 3 describes an overview of the 
approach and the challenges of using virtual machines to construct 
the system software for large-scale shared-memory multiproces- 
sors. Section 4 presents the design and implementation of Disco 
and Section 5 shows experimental results. We end the paper with a 
discussion of related work in Section 6 and conclude in Section 7. 

2 Problem Description 
This paper addresses the problems seen by computer vendors at- 
tempting to provide system software for their innovative hardware. 
For the purposes of this paper, the innovative hardware is scalable 
shared memory multiprocessors, but the issues are similar for any 
hardware innovation that requires significant changes in the system 
software. For shared memory multiprocessor+ research groups 
have demonstrated prototype operating systems such as Hive [5] 
and Hurricane [25] that address the challenges of scalability and 
fault containment. Silicon Graphics has announced the Cellular 
IRIX kernel to support its shared memory machine, the 
Origin2000 [IS]. These designs require significant OS changes, in- 
cluding partitioning the system into scalable units, building a single 
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FIGURE 1. Architecture of Disco: Disco is a virtual machine monitor, a software layer between the hardware and multiple virtual 
machines that run independent operating systems. This allows multiple copies of a commodity operating system to coexist with special- 
ized “thin” operating systems on the same hardware. The multiprocessor consists of a set of processing elements (FE) connected by a 
high-performance interconnect. Each processing eIement contains a number of processors and a portion of the memory of the machine. 

system image across the units, as well as other features such as fault 
containment [S] and ccNUMA management [26J. 

With the size of the system software for modem computers in 
the millions of lines of code, the changes for ccNUMA machines 
represent a significant development cost. These changes have an 
impact on many of the standard modules that make up a modem 
system, such as virtual memory management and the scheduler. As 
a result, the system software for these machines is generally deliv- 
ered significantly later than the hardware. Even when the changes 
are functionally complete, they are likely to introduce instabilities 
for a certain period of time. 

Late, incompatible, and possibly even buggy system software 
can significantly impact the success of such machines, regardless of 
the innovations in the hardware. As the computer industry matures, 
users expect to carry forward their large base of existing application 
programs. Furthermore, with the increasing roIe that computers 
play in today’s society, users are demanding highly reliable and 
available computing systems. The cost of achieving reliability in 
computers may even dwarf the benefits of the innovation in hard- 
ware for many application areas. 

Computer hardware vendors that use “commodity” operating 
systems such as Microsoft’s Windows NT [9] face an even greater 
problem in obtaining operating system support for their ccNUMA 
multiprocessors. These vendors need to persuade an independent 
company to make changes to the operating system to support the 
new hardware. Not only must these vendors deliver on the promises 
of the innovative hardware, they must also convince powerful soft- 
ware companies that running on their hardware is worth the effort 
of the port [20]. 

Given this situation, it is no small wonder that computer archi- 
tects frequently complain about the constraints and inflexibility of 
system software. From their perspective, these software constraints 
are an impediment to innovation. To reduce the gap between hard- 
ware innovations and the adaptation of system software, system de- 
velopers must find new ways to develop their software more 
quickly and with fewer risks of incompatibilities and instabilities. 

3 A Return to Virtual Machine Monitors 

To address the problem of providing system software for scalable 

multiprocessors, we have developed a new twist on the relatively 
old idea of virtual machine monitors [13]. Rather than attempting to 
modify existing operating systems to run on scalable shared-mem- 
ory multiprocessors, we insert an additional layer of software bc- 
tween the hardware and the operating system. This layer of 
software, called a virtual machine monitor, virtualizes all the re- 
sources of the machine, exporting a more conventional hardware 
interface to the operating system. The monitor manages all the re- 
sources so that muItiple virtual machines can coexist on the same 
multiprocessor. Figure 1 shows how the virtual machine monitor 
allows multiple copies of potentially different operating systems to 
coexist. 

Virtual machine monitors, in combination with commodity 
and specialized operating systems, form a flexible system software 
solution for these machines. A large ccNUMA multiprocessor can 
be configured with multiple virtual machines each running a com- 
modity operating system such as Microsoft’s Windows NT or some 
variant of UNIX. Each virtual machine is configured with the pro- 
cessor and memory resources that the operating system can cffcc- 
tively handle. The virtual machines communicate using standard 
distributed protocols to export the image of a cluster of machines. 

Although the system looks like a cluster of loosely-coupled 
machines, the virtual machine monitor uses global policies to man- 
age all the resources of the machine, allowing workloads to exploit 
the fine-grain resource sharing potential of the hardware. For exam- 
ple, the monitor can move memory between virtual machines to 
keep applications from paging to disk when free memory is avail- 
able in the machine. Similarly, the monitor dynamically schedules 
virtual processors on the physical processors to balance the load 
across the machine. 

The use of commodity software leverage the significant cngi- 
neering effort invested in these operating systems and allows 
ccNUMA machines to support their large application base. Since 
the monitor is a relatively simple piece of code, this can bc done 
with a small implementation effort as well as with a low risk of in- 
troducing software bugs and incompatibilities. 

The approach offers two different possible solutions to handle 
applications whose resource needs exceed the scalability of com- 
modity operating systems. First, a relatively simple change to the 
commodity operating system can allow applications to cxplicltly 
share memory regions across virtual machine boundaries. The mon- 
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itor contains a simple interface to setup these shared regions. The 
operating system is extended with a special virtual memory seg- 
ment driver to allow processes running on multiple virtual ma- 
chines to share memory. For example, a parallel database server 
could put its buffer cache in such a shared memory region and have 
query engines running on multiple virtual machines. 

Second, the flexibility of the approach supports specialized 
operating systems for resource-intensive applications that do not 
need the full functionality of the commodity operating systems. 
These simpler, specialized operating systems better support the 
needs of the applications and can easily scale to the size of the ma- 
chine. For example, a virtual machine running a highly-scalable 
lightweight operating system such as Puma [24] allows large scien- 
tific applications to scale to the size of the machine. Since the spe- 
cialized operating system runs in a virtual machine, it can run 
alongside commodity operating systems running standard applica- 
tion programs. Similarly, other important applications such as data- 
base and web servers could be run in highly-customized operating 
systems such as database accelerators. 

Besides the flexibility to support a wide variety of workloads 
efliciently, this approach has a number of additional advantages 
over other system software designs targeted for ccNUMA ma- 
chines. Running multiple copies of an operating system, each in its 
own virtual machine, handles the challenges presented by ccNU- 
MA machines such as scalability and fault-containment. The virtual 
machine becomes the unit of scalability, analogous to the cell struc- 
ture of Hurricane, Hive, and Cellular IRIX. With this approach, 
only the monitor itself and the distributed systems protocols need to 
scale to the size of the machine. The simplicity of the monitor 
makes this task easier than building a scalable operating system. 

The virtual machine also becomes the unit of fault contain- 
ment where failures in the system software can be contained in the 
virtual machine without spreading over the entire machine. To pro- 
vide hardware fault-containment, the monitor itself must be struc- 
tured into cells. Again, the simplicity of the monitor makes this 
easier than to protect a full-blown operating system against hard- 
ware faults. 

NUMA memory management issues can also be handled by 
the monitor, effectively hiding the entire problem from the operat- 
ing systems. With the careful placement of the pages of a virtual 
machine’s memory and the use of dynamic page migration and 
page replication, the monitor can export a more conventional view 
of memory as a uniform memory access (UMA) machine. This al- 
lows the non-NUMA-aware memory management policies of com- 
modity operating systems to work we!!, even on a NUMA machine. 

Besides handling ccNUMA multiprocessors, the approach 
also inherits a!! the advantages of traditional virtual machine mon- 
itors. Many of these benefits are still appropriate today and some 
have grown in importance. By exporting multiple virtual machines, 
a single ccNUMA multiprocessor can have multiple different oper- 
ating systems simultaneously running on it. Older versions of the 
system software can be kept around to provide a stable platform for 
keeping legacy applications running. Newer versions can be staged 
in carefully with critical applications residing on the older operating 
systems until the newer versions have proven themselves. This ap- 
proach provides an excellent way of introducing new and innova- 
tive system software while still providing a stable computing base 
for applications that favor stability over innovation. 

3.1 Challenges Facing Virtual Machines 

Unfortunately, the advantages of using virtual machine monitors 
come with certain disadvantages as well. Among the well-docu- 
mented problems with virtual machines are the overheads due to the 
virtualization of the hardware resources, resource management 
problems, and sharing and communication problems. 

Overheads. The overheads present in traditional virtual machine 
monitors come from many sources, including the additional excep- 
tion processing, instruction execution and memory needed for vir- 
tualizing the hardware. Operations such as the execution of 
privileged instructions cannot be safely exported directly to the op- 
erating system and must be emulated in software by the monitor. 
Similarly, the access to I/O devices is virtualized, so requests must 
be intercepted and remapped by the monitor. 

In addition to execution time overheads, running multiple in- 
dependent virtual machines has a cost in additional memory. The 
code and data of each operating system and application is replicated 
in the memory of each virtual machine. Furthermore, large memory 
structures such as the file system buffer cache are also replicated re- 
sulting in a significant increase in memory usage. A similar waste 
occurs with the replication of file systems for the different virtual 
machines. 

Resource Management. Virtual machine monitors frequently 
experience resource management problems due to the lack of infor- 
mation available to the monitor to make good policy decisions. For 
example, the instruction execution stream of an operating system’s 
idle loop or the code for lock busy-waiting is indistinguishable at 
the monitor’s level from some important calculation. The result is 
that the monitor may schedule resources for useless computation 
while useful computation may be waiting. Similarly, the monitor 
does not know when a page is no longer being actively used by a 
virtual machine, so it cannot reallocate it to another virtual ma- 
chine. In general, the monitor must make resource management de- 
cisions without the high-level knowledge that an operating system 
would have. 

Communication and Sharing. Finally, running multiple inde- 
pendent operating systems made sharing and communication diffi- 
cult. For example under CMS on VM/370, if a virtual disk 
containing a user’s files was in use by one virtual machine it could 
not be accessed by another virtual machine. The same user could 
not start two virtual machines, and different users could not easily 
share files. The virtual machines looked like a set of independent 
stand-alone systems that simply happened to be sharing the same 
hardware. 

Although these disadvantages still exist, we have found their 
impact can be greatly reduced by combining recent advances in op- 
erating system technology with some new tricks implemented in the 
monitor. For example, the prevalence of support in modem operat- 
ing systems for interoperating in a distributed environment greatly 
reduces the communication and sharing problems described above. 
In the following section we present techniques that allow the over- 
heads to be small compared to the benefits that can be achieved 
through this approach. 

4 Disco: A Virtual Machine Monitor 
Disco is a virtual machine monitor designed for the FLASH multi- 
processor [17]. a scalable cache-coherent multiprocessor. The 
FLASH multiprocessor consists of a collection of nodes each con- 
taining a processor, main memory, and I/O devices. The nodes are 
connected together with a high-performance scalable interconnect. 
The machines use a directory to maintain cache coherency. provid- 
ing to the software the view of a shared-memory multiprocessor 
with non-uniform memory access times. Although written for the 
FLASH machine, the hardware mode! assumed by Disco is also 
available on a number of commercial machines including the Con- 
vex Exemplar [4J, Silicon Graphics Origin2000 [IS], Sequent NU- 
MAQ [19], and DataGeneral NUMALiine. 

This section describes the design and implementation of Dis- 
co. We first describe the key abstractions exported by Disco. We 
then describe the implementation of these abstractions. Finally, we 
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discuss the operating system requirements to run on top of Disco. 

4.1 Disco’s Interface 

Disco runs multiple independent virtual machines simultaneously 
on the same hardware by virtualizing all the resources of the ma- 
chine. Each virtual machine can run a standard operating system 
that manages its virtualized resources independently of the rest of 
the system. 

Processors. To match the FLASH machine, the virtual CPUs of 
Disco provide the abstraction of a MIPS RIO000 processor. Disco 
correctly emulates all instructions, the memory management unit, 
and the trap architecture of the processor allowing unmodified ap- 
plications and existing operating systems to run on the virtual ma- 
chine. Though required for the FLASH machine, the choice of the 
processor was unfortunate for Disco since the RlOOOO does not sup- 
port the complete virtualization of the kernel virtual address space. 
Section 4.3.1 details the OS changes needed to allow kernel-mode 
code to run on Disco. 

Besides the emulation of the MIPS processor, Disco extends 
the architecture to support efficient access to some processor func- 
tions. For example, frequent kernel operations such as enabling and 
disabling CPU interrupts and accessing privileged registers can be 
performed using load and store instructions on special addresses. 
This interface allows operating systems tuned for Disco to reduce 
the overheads caused by trap emulation. 

Physical Memory. Disco provides an abstraction of main memo- 
ry residing in a contiguous physical address space starting at ad- 
dress zero. This organization was selected to match the assumptions 
made by the operating systems we run on top of Disco. 

Since most commodity operating systems are not designed to 
effectively manage the non-uniform memory of the FLASH ma- 
chine, Disco uses dynamic page migration and replication to export 
a nearly uniform memory access time memory architecture to the 
software. This allows a non-NUMA aware operating system to run 
well on FLASH without the changes needed for NUMA memory 
management. 

I/O Devices. Each virtual machine is created with a specified set 
of I/O devices, such as disks, network interfaces, periodic interrupt 
timers, clock, and a console. As with processors and physical mem- 
ory, most operating systems assume exclusive access to their I/O 
devices, requiring Disco to virtualize each I/O device. Disco must 
intercept all communication to and from I/O devices to translate or 
emulate the operation. 

Because of their importance to the overall performance and ef- 
ficiency of the virtual machine, Disco exports special abstractions 
for the SCSI disk and network devices. Disco virtualizes disks by 
providing a set of virtual disks that any virtual machine can mount. 
Virtual disks can be configured to support different sharing and per- 
sistency models. A virtual disk can either have modifications (i.e. 
disk write requests) stay private to the virtual machine or they can 
be visible to other virtual machines. In addition, these modifications 
can be made persistent so that they survive the shutdown of the vir- 
tual machine or non-persistent so that they disappear with each re- 
boot. 

To support efficient communication between virtual ma- 
chines, as well as other real machines, the monitor virtualizes ac- 
cess to the networking devices of the underlying system. Each 
virtual machine is assigned a distinct link-level address on an inter- 
nal virtual subnet handled by Disco. Besides the standard network 
interfaces such as Ethernet and FDDI, Disco supports a special net- 
work interface that can handle large transfer sizes without fragmen- 
tation. For communication with the world outside the machine, 
Disco acts as a gateway that uses the network interfaces of the ma- 
chine to send and receive packets. 

4.2 Implementation of Disco 

Like most operating systems that run on shared-memory multipro- 
cessors, Disco is implemented as a multi-threaded shared memory 
program. Disco differs from existing systems in that careful attcn- 
tion has been given to NUMA memory placement, cache-aware 
dataltyuctures, and interprocessor communication patterns. For cx- 
ample, Disco does not contain linked lists or other data structures 
with poor cache behavior. The small size of Disco, about 13,000 
lines of code, allows for a higher degree of tuning than is possible 
with million line operating systems. 

To improve NUMA locality, the small code segment of Disco, 
currently 72KI3, is replicated into all the memories of FLASH ma- 
chine so that all instruction cache misses can be satisfied from the 
local node. Machine-wide data structures are partitioned so that the 
parts that are accessed only or mostly by a single processor arc in a 
memory local to that processor. 

For the data structures accessed by multiple processors, very 
few locks are used and wait-free synchronization [14] using the 
MIPS LUSC instruction pair is heavily employed. Disco commu- 
nicates through shared-memory in most cases. It uses inter-proces- 
sor interrupts for specific actions that change the state of a rcmoto 
virtual processor, for example TLB shootdowns and posting of an 
interrupt to a given virtual CPU. Overall, Disco is structured mote 
like a highly tuned and scalable SPLASH application [27] than like 
a general-purpose operating system. 

4.2.1 Virtual CPUs 

Like previous virtual machine monitors, Disco emulates the execu- 
tion of the virtual CPU by using direct execution on the real CPU, 
To schedule a virtual CPU, Disco sets the real machines’ rcgistcrs 
to those of the virtual CPU and jumps to the current PC of the vir- 
tual CPU. By using direct execution, most operations run at the 
same speed as they would on the raw hardware. The challenge of 
using direct execution is the detection and fast emulation of those 
operations that cannot be safely exported to the virtual machine 
These operations are.primadly the execution of privileged instruc- 
tions performed by the operating system such as TLB modification, 
and the direct access to physical memory and I/O devices. 

For each virtual CPU, Disco keeps a data structure that acts 
much like a process table entry in a traditional operating system. 
This structure contains the saved registers and other state of a virtu- 
al CPU when it is not scheduled on a real CPU. To perform the em- 
ulation of privileged instructions, Disco additionally maintains the 
privileged registers and TLB contents of the virtual CPU in this 
structure. 

On the MIPS processor, Disco runs in kernel mode with full 
access to the machine’s hardware. When control is given to a virtual 
machine to run, Disco puts the processor in supervisor mode when 
running the virtual machine’s operating system, and in user mode 
otherwise. Supervisor mode allows the operating system to USC a 
protected portion of the address space (the supervisor segment) but 
does not give access to privileged instructions or physical memory, 
Applications and kernel code can however still be directly executed 
since Disco emulates the operations that cannot be issued in supcr- 
visor mode. When a trap such as page fault, system call, or bus error 
occurs, the processor traps to the monitor that emulates the effect of 
the trap on the currently scheduled virtual processor. This is done 
by updating some of the privileged registers of the virtual processor 
and jumping to the virtual machine’s trap vector. 

Disco contains a simple scheduler that allows the virtual pro- 
cessors to be time-shared across the physical processors of the ma- 
chine. The scheduler cooperates with the memory management to 
support affinity scheduling that increases data locality. 
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FIGURE 2. ‘Ikansparent Page Replication. Disco uses the physical to machine mapping to replicate user and kernel pages. Virtual 
pages from VCPUs 0 and 1 of the same virtual machine both map the same physical page of their virtual machine. However, Disco trans- 
parently maps each virtual page to a machine page replica that is located on the local node. 

4.2.2 Virtual Physical Memory 

To virtualize physical memory, Disco adds a level of address trans- 
lation and maintains physical-to-machine address mappings. Virtu- 
al machines use physical addresses that have memory starting at 
address zero and continuing for the size of virtual machine’s mem- 
ory, Disco maps these physical addresses to the 40 bit machine ad- 
dresses used by the memory system of the FLASH machine. 

Disco performs this physical-to-machine translation using the 
software-reloaded translation-lookaside buffer (TLB) of the MIPS 
processor. When an operating system attempts to insert a virtual-to- 
physical mapping into the TLB, Disco emulates this operation by 
translating the physical address into the corresponding machine ad- 
dress and inserting this corrected TLB entry into the TLB. Once the 
TLB entry has been established, memory references through this 
mapping are translated with no additional overhead by the proces- 
sor. 

To quickly compute the corrected TLB entry, Disco keeps a 
per virtual machinepmap data structure that contains one entry for 
each physical page of a virtual machine. Each pmap entry contains 
a pre-computed TLB entry that references the physical page loca- 
tion in real memory. Disco merges that entry with the protection 
bits of the original entry before inserting it into the TLB. The pmap 
entry also contains backmaps pointing to the virtual addresses that 
are used to invalidate mappings from the TLB when a page is taken 
away from the virtual machine by the monitor. 

On MIPS processors, all user mode memory references must 
be translated by the TLB but kernel mode references used by oper- 
ating systems may directly access physical memory and I/O devices 
through the unmapped segment of the kernel virtual address space. 
Many operating systems place both the operating system code and 
data in this segment. Unfortunately, the MIPS architecture bypasses 
the TLB for this direct access segment making it impossible for 
Disco to efficiently remap these addresses using the TLB. Having 
each operating system instruction trap into the monitor would lead 
to unacceptable performance. We were therefore required to re-link 
the operating system code and data to a mapped region of the ad- 
dress space. This problem seems unique to MIPS as other architec- 
tures such as Alpha can remap these regions using the TLB. 

The MIPS processors tag each TLB entry with an address 
space identifier (ASID) to avoid having to flush the TLB on MMU 
context switches. To avoid the complexity of virtualizing the 
ASIDs, Disco flushes the machine’s TLB when scheduling a differ- 
ent virtual CPU on a physical processor. This approach speeds up 
the translation of the TLB entry since the ASID field provided by 
the virtual machine can be used directly. 

A workload executing on top of Disco will suffer an increased 
number of TLB misses since the TLB is additionally used for all op- 
erating system references and since the TLB must be flushed on vir- 
tual CPU switches. In addition, each TLB miss is now more 
expensive because of the emulation of the trap architecture, the em- 
ulation of privileged instructions in the operating systems’s TLB- 
miss handler, and the remapping of physical addresses described 
above. To lessen theperformance impact, Disco caches recent vir- 
tual-to-machine translations in a second-level software TLB. On 
each TLB miss, Disco’s TLB miss handler first consults the second- 
level TLB. If it finds a matching virtual address it can simply place 
the cached mapping in theTLB, otherwise it forwards theTLB miss 
exception to the operating system running on the virtual machine. 
The effect of this optimization is that virtual machines appear to 
have much larger TLBs than the MIPS processors. 

4.2.3 NUMA Memory Management 

Besides providing fast translation of the virtual machine’s physical 
addresses to real machine pages, the memory management part of 
Disco must also deal with the allocation of real memory to virtual 
machines. This is a particularly important task on ccNUMA ma- 
chines since the commodity operating system is depending on Dis- 
co to deal with the non-uniform memory access times. Disco must 
try to allocate memory and schedule virtual CPUs so that cache 
misses generated by a virtual CPU will be satisfied from local mem- 
ory rather than having to suffer the additional latency of a remote 
cache miss. To accomplish this, Disco implements a dynamic page 
migration and page repIication system [2,7] that moves or replicates 
pages to maintain locality between a virtual CPU’s cache misses 
and the memory pages to which the cache misses occur. 

Disco targets machines that maintain cache-coherence in hard- 
ware. On these machines, NUMA management, implemented ei- 
ther in the monitor or in the operating system, is not required for 
correct execution, but rather an optimization that enhances data lo- 
cality. Disco uses a robust policy that moves only pages that will 
likely result in an eventual performance benefit [26]. Pages that are 
heavily accessed by only one node are migrated to that node. Pages 
that are primarily read-shared are replicated to the nodes most 
heavily accessing them. Pages that are write-shared are not moved 
because they fundamentally cannot benefit from either migration or 
replication. Disco’s policy also limits the number of times a page 
can move to avoid excessive overheads. 

Disco’s page migration and replication policy is driven by the 
cache miss counting facility provided by the FLASH hardware. 
FLASH counts cache misses to each page from every physical pro- 
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entriesmapping the old machine-page and then copies the data to a 
local machine page. To replicate a page, the monitor must first 
downgrade all TLB entries mapping the machine page to ensure 
read-only accesses. It then copies the page to the local node and up- 
dates the relevant TLB entries mapping the old machine page. The 
resulting configuration after replication is shown in Figure 2. 

Disco maintains a memmap data structure that contains an en- 
try for each real machine memory page. To perform the necessary 
TLB shootdowns during a page migration or replication, the mem- 
map entry contains a list of the virtual machines using the.page and 
the virtual addresses used to access them. A memmap entry also 
contains pointers to any replicated copies of the page. 

4.2.4 Virtual I/O Devices 

To virtualize access to l/O devices, Disco intercepts all device 

. accesses from the virtual machine and eventually forwards them to 
the physical devices. Disco could interpose on the programmed in- 
put/output (PIOs) from the operating system device drivers by trap- 
ping into the monitor and emulating the functionality of the 
hardware device assumed by the version of the operatingsystem we 
used. However we found it was much cleaner to simpIy add special 
device drivers into the operating system. Each Disco device de&es 
a monitor cull used by the device driver to pass all command argu- 
ments in a single trap. 

Devices such as disks and network interfaces include a DMA 
map as part of their arguments. Disco must intercept such DMA re- 
quests to translate the physical addresses specified by the operating 
systems into machine addresses. Disco’s device drivers then inter- 
act directly with the physical device. 

For devices accessed by a single virtual machine, Disco only 
needs to guarantee the exclusivity of this access and translate the 
physical memory addresses of the DMA, but does not need to vir- 
tualize the I/O resource itself. 

The interposition on all DMA requests offers an opportunity 
for Disco to share disk and memory resources among virtual ma- 
chines. Disco’s copy-on-write disks allow virtual machines to share 
both main memory and disk storage resources. Disco’s virtual net- 
work devices allow virtual machines to communicate efficiently. 
The combination of these two mechanisms, detailed in 
Section 4.2.5 and Section 4.2.6, allows Disco to support a system- 
wide cache of disk blocks in memory that can be transparently 
shared between all the virtual machines. 

4.2.5 Copy-on-write Disks 

Disco intercepts every disk request that DMAs data into memory. 

. 

Physical Memory of VM 1 Physical Memory of VM 2 

Code Data Buffer Cache -Code Data Buffer Cache q Private Pages 

cl 
Shared Pages 
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Machine Memory 
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FIGURE 3. ‘Dartsparent Sharing of Pages. Read only pages brought in from disk such as the kernel text and the buffer cache can be 
transparently shared between virtual machines. This creates a global buffer cache shared across virtual machines and helps reduce the 
memory footprint of the system. 

cessor. Once FLASH detects a hot page, the monitor chooses be- When a virtual machine requests to read a disk block that is already 
tween migrating and replicating the hot page based on the cache in main memory, Disco can process the request without going to 
miss counters. To migrate a page, the monitor transparently chang- disk. Furthermore, if the disk request is a multiple of the machine’s 
es the physical-to-machine mapping. It first invalidates any TLB . page size, Disco can process the DMA request by simply mapping 

the page into the virtual machine’s physical memory. In order to 
preserve the semantics of a DMA operation, Disco maps the page 
read-only into the destination address page of the DMA. Attempts 
to modify a shared page will resuIt in a copy-on-write fault handled 
internally by the monitor. 

Using this mechanism, multiple virtual machines accessing n 
shared disk end up sharing machine memory. The copy-on-write 
semantics means that the virtual machine is unaware of the sharing 
with the exception that disk requests can finish nearly instantly, 
Consider an environment running multiple virtual machines for 
scalability purposes. All the virtual machines can share the same 
root disk containing the kernel and application programs. The code 
and other read-only data stored on the disk will be DMA-ed into 
memory by the first virtual machine that accesses it. Subsequent rc- 
quests will simply map the page specified to the DMA engine with- 
out transferring any data. The result is shown in Figure 3 where all 
virtual machines share these read-only pages. Effectively we get the 
memory sharing patterns expected of a single shared memory mul- 
tiprocessor.operating system even though the system runs multiple 
independent operating systems. 

To preserve the isolation of the virtual machines, disk writes 
must be kept private to the virtual machine that issues them. Disco 
logs the modified sectors so that the copy-on-write disk is never ac- 
tually modified. For persistent disks, these modifted sectors would 
be logged in a separate disk partition managed by Disco. To simpli- 
fy our implementation, we only applied the concept of copy-on- 
write disks to non-p”ersistent disks and kept the modified sectors in 
main memory whenever possible. 

The implementation of this memory and disk sharing feature 
ofDisco uses two data structures. For each disk device, Disco main- 
tains a B-Tree indexed by the range of disk sectors being requested, 
This ‘B-Tree is used to find the machine memory address of the sec- 
tors in the global disk cache. A second B-Tree is kept for each disk 
and virtual machine to find any modifications to the block made by 
that virtual machine. We used B-Trees to efficiently support queries 
on ranges of sectors [6]. 

The copy-on-write mechanism is used for file systems such as 
the root disk whose‘modifications as not intended to be persistent 
or shared across virtual machines. For persistent disks such as the 
one containing user files, Disco enforces that only a single virtual 
machine can mount the disk at any given time. As a result, Disco 
does not need to virtualize the layout of the disk. Persistent disks 
can be accessed by other virtual machines through a distributed file 
system protocol such as NFS. 
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FIGURE 4. ‘Ikansparent Sharing of Pages Over NFS. This figure illustrates the case when the NFS reply, to a read request, includes 
a data page. (1) The monitor’s networking device remaps the data page from the source’s machine address space to the destination’s. (2) 
The monitor remaps the data page from the driver’s mbuf to the clients buffer cache. This remap is initiated by the operating system 
through a monitor call. 

4.2.6 Virtual Network Interface 

The copy-on-write mechanism for disks allows the sharing of mem- 
ory resources across virtual machines, but does not allow virtual 
machines to communicate with each other. To communicate, virtu- 
al machines use standard distributed protocols. For example, virtual 
machines share files through NFS. As a result, shared data will end 
up in both the client’s and server’s buffer cache. Without special at- 
tention, the data will be duplicated in machine memory. We de- 
signed a virtual subnet managed by Disco that allows virtual 
machines to communicate with each other, while avoiding replicat- 
ed data whenever possible. 

The virtual subnet and networking interfaces of Disco also use 
copy-on-write mappings to reduce copying and to allow for memo- 
ry sharing. The virtual device uses ethernet-like addresses and does 
not limit the maximum transfer unit (MTU) of packets. A message 
transfer sent between virtual machines causes the DMA unit to map 
the page read-only into both the sending and receiving virtual ma- 
chine’s physical address spaces. The virtual network interface ac- 
cepts messages that consist of scattered buffer fragments. Our 
implementation of the virtual network in Disco and in the operating 
system’s device driver always respects the data alignment of the 
outgoing message so that properly aligned message fragments that 
span a complete page are always remapped rather than copied. 

Using this mechanism, a page of data read from disk into the 
file cache of a file server running in one virtual machine can be 
shared with client programs that request the file using standard dis- 
tributed file system protocol such as NFS. As shown in Figure 4, 
Disco supports a global disk cache even when a distributed file sys- 
tem is used to connect the virtual machines. In practice, the combi- 
nation of copy-on-write disks and the access to persistent data 
through the specialized network device provides a global buffer 
cache that is transparently shared by independent virtual machines. 

As a result, all read-only pages can be shared between virtual 
machines. Although this reduces the memory footprint, this may 
adversely affect data locality as most sharers will access the page 
remotely. However, Disco’s page replication policy selectively rep- 
licates the few “hot” pages that suffer the most cache misses. Pages 
are therefore shared whenever possible and replicated only when 
necessary to improve performance. 

4.3 Running Commodity Operating Systems 

The “commodity” operating system we run on Disco is IRIX 5.3, a 
UNIX SVR4 based operating system from Silicon Graphics. Disco 

is however independent of any specific operating system and we 
plan to support others such as Windows NT and Linux. 

In their support for portability, modem operating systems 
present a hardware abstraction level (HAL) that allows the operat- 
ing system to be effectively “ported” to run on new platforms. Typ 
ically the HAL of modem operating systems changes with each 
new version of a machine while the rest of the system can remain 
unchanged. Our experience has been that relatively small changes 
to the HAL can reduce the overhead of virtualization and improve 
resource usage. 

Most of the changes made in IRIX were part of the HAL’. All 
of the changes were simple enough that they are unlikely to intro- 
duce a bug in the software and did not require a detailed understand- 
ing of the internals of IRIX. Although we performed these changes 
at the source level as a matter of convenience, many of them were 
simple enough to be performed using binary translation or augmen- 
tation techniques. 

4.3.1 Necessary Changes for MIPS Architecture 

Virtual processors running in supervisor mode cannot efficiently 
access the KSEGO segment of the MIPS virtual address space, that 
always bypasses the TLB. Unfortunately, many MIPS operating 
systems including IRIX 5.3 place the kernel code and data in the 
KSEGO segment. As a result, we needed to relocate the unmapped 
segment of the virtual machines into a portion of the mapped super- 
visor segment of the MIPS processor. This allowed Disco to emu- 
late the direct memory access efficiently using the TLB. The need 
for relocating the kernel appears to be unique to MIPS and is not 
present in other modem architecture such as Alpha, x86, SPARC, 
and PowerPC. 

Making these changes to IRIX required changing two header 
fiIes that describe the virtual address space layout, changing the 
linking options, as well as 15 assembly statements in locores. Un- 
fortunately, this meant that we needed tore-compile and re-link the 
IRIX kernel to run on Disco. 

4.3.2 Device Drivers 

Disco’s monitor call interface reduces the complexity and overhead 
of accessing I/O devices. We implemented UART, SCSI disks, and 

1. Unlike other operating systems. IRIX is not structured with a well- 
defined HAL. In this paper, the HAL includes all the platform and 
processor-specific functions of the operating system. 
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ethernet drivers that match this interface. Since the monitor call in- 
terface provides the view of an idealized-device, the implementa- 
tion of these drivers was straightforward. Since kernels are normal- 
ly designed to run with different device drivers, this kind of change 
can be made without the source and with only a small risk of intro- 
ducing a bug. 

The complexity of the interaction with the specific devices is 
left to the virtual machine monitor. Fortunately, we designed the 
virtual machine monitor’s internal device driver interface to simpli- 
fy the integration of existing drivers written for commodity operat- 
ing systems. Disco uses IRE’s original device drivers. 

4.3.3 Changes to the HAL 

Having to take a trap on every privileged register access can cause 
significant overheads when running kernel code such as synchroni- 
zation routines and trap handlers that frequently access privileged 
registers. To reduce this overhead, we patched the-HAL of IRIX to 
convert these frequently used privileged instructions to use non- 
trapping load and store instructions to a special page of the address 
space that contains these registers. This optimization is only applied 
to instructions that read and write privileged registers without caus- 
ing other side-effects. Although for this experiment we performed 
the patches by hand to only a few critical locations, the patches 
could easily be automatically applied when the privileged instruc- 
tion first generates a trap. As part of the emulation process, Disco 
could overwrite certain instructions with the special load and store 
so it would not suffer the overhead of the trap again. 

To help the monitor make better resource management deci- 
sions, we have added code to the HAL to pass hints to the monitor 
giving it higher-level knowledge of resource utilization. We insert- 
ed a small number of monitor calls in the physical memory manage- 
ment module of the operating systems. The first monitor call 
requests a zeroed page. Since the monitor must clear pages to en- 
sure the isolation of virtual machines anyway, the operating system 
is freed from this task. A second monitor call-informs Disco that a 
page has been put on the operatingsystem’s freelist without a 
chance of reclamation, so that Disco can immediately reclaim the 
memory. 

To improve the utilization of processor resources, Disco as- 
signs special semantics to the reduced power consumption mode of 
the MIPS processor. This mode is used by the operating system 
whenever the system is idle. Disco will deschedule the virtual CPU 
until the mode is cleared or an interrupt is posted. A monitor call in- 
serted in the HAL’s idle loop would have had the same effect. 

4.3.4 Other Changes to IRIX 

For some optimizations Disco relies on the cooperation of the oper- 
ating system. For example, the virtual network device can only take 
advantage of the remapping techniques if the packets contain prop- 
erly aligned, complete pages that are not written. We found that the 
operating system’s networking subsystem naturally meets most of 
the requirements. For example, it preserves the alignment of data 
pages, taking advantage of the scatter/gather options of networking 
devices. Unfortunately, IRIx’s mbufmanagement is such that the 
data pages of recently freed mbufs are linked together using the first 
word of the page. This guarantees that every packet transferred by 
the monitor’s networking device using remaps will automatically 
trigger at least one copy-on-write fault on the receiving end. A sim- 
ple change to the mbuf freelist data structure fixed this problem. 

The kernel implementation of NFS always copies data from 
the incoming mbufs to the receiving file buffer cache, even when 
the packet contained un-fragmented, properly aligned pages. This 
would have effectively prevented the sharing of the file buffer 
cache across virtual machines. To have clients and servers transpar- 
ently share the page, we specialized the call to bcopy to a new 

remap function offered by the HAL. This remap function has the SC- 

mantics of a bcopy routine but uses a monitor call to remap the page 
whenever possible. Figure 4 shows how a data page transferred dur- 
ing an NFS read or write call is first remapped from the source vlr- 
tual machine to the destination memory buffer (mbuf) page by the 
monitor’s networking device, and then remapped into its final locn- 
tion by a call to the HAL’s remap function. 

‘4.4 SPLASHOS: A Specialized Operating System 

The ability to run a thin or specialized operating system allows Dls- 
co to support large-scale parallel applications that span the cotlrc 
machine. These applications may not be well served by a full func- 
tion operating system. In fact, specialized operating systems such ns 

Puma [24] are commonly used to run scientific applications on par- 
allel systems. 

--To illustrate this point, we developed a specialized library op- 
erating system [I I], “SPLASHOS”, that runs directly on top of Dis- 
co. SPLASHOS contains the services needed to run SPLASH-2 
applications [27]: thread creation and synchronization routines, 
“libc” routines, and an NFS client stack for file I/O. The application 
is linked with the library operating system and runs in the same ad- 
dress space as the operating system. As a result, SPLASHOS does 
not need to support a virtual memory subsystem, deferring all page 
faulting responsibilities directly to Disco. 

Although one might find SPLASHOS to be an overly simplis- 
tic and limited operating system if it were to run directly on hard- 
ware, the ability to run it in a virtual machine alongside commodity 
operating systems offers a powerful and attractive combination, 

5 Experimental Results 
We have implemented Disco as described in the previous secllon 
and performed a collection of experiments to evaluate it. We de- 
scribe our simulation-based experimental setup in Section 5.1. The 
first set of experiments presented in Sections 5.2 and 5.3 dcmon- 
strate that Disco overcomes the traditional problems associated 
with virtual machines, such as high overheads and poor resource 
sharing. We then demonstrate in Sections 5.4 and 5.5 the benefits 
of using virtual machines, including improved scalability and data 
locality. 

5.1 Experimental Setup and Workloads 

Disco targets the FLASH machine, which is unfortunately not yet 
available. As a result, we use the SimOS [22] machine simulator to 
develop and evaluate Disco. SimOS is a machine simulator that 
models the hardware of MIPS-based multiprocessors in enough dc- 
tail to run essentially unmodified system software such as the IRIX 
operating system and the Disco monitor. For this study, we conflg- 
ured SimOS to resemble a large-scale multiprocessor with perfor- 
mance characteristics similar to FLASH. Although SimOS contains 
simulation models of FLASH’s MIPS RIO000 processors, thcsc 
simulation models are too slow for the workloads that we chose to 
study. As a result, we model statically scheduled, non-superscalar 
processors running at twicejhe clock rate. These simpler pipelines 
can be modelled one order of magnitude faster than the RlOOOO. 
The processors have the on-chip caches of the MIPS RlOOOO 
(32KB split instruction/data) and a IMB board-level cache. In tho 
absence of memory system contention, the minimum latency of a 
cache miss is 300 nanoseconds to local memory and 900 nanosec- 
onds to remote memory. 

Although SimOS allows us to run realistic workloads and cx- 
amine their behavior in detail with its non-intrusive annotation 
mechanism, the simulation slowdowns prevent us from examining 
long running workloads in detail. Using realistic but short work- 
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Workload Environment Description Characteristics 
Execution 

Time 

Pmake Software Development 
Parallel compilation (-J2) of the Multiprogrammed, short-lived, 
GNU chess application system and I/O intensive processes 

3.9 set 

Engineering Hardware Development 
Verilog simulation (Chronologies Multiprogrammed, long running 
VCS) + machine simulation 3.5 set 

processes 

Splash Scientific Computing Raytrace from SPLASH-2 Parallel applications 12.9 set 

Database Commercial Database 
Sybase Relational Database 
Server decision support workload 

Single memory intensive process 2.0 set 

Table 1. Workloads. Each workload is scaled differently for the uniprocessor and multiprocessor experiments. The reported execution 
time is for the uniprocessor workloads running on IRIX without Disco. The execution time does not include the time to boot the operating, 
ramp-up the applications and enter a steady execution state. This setup time is at least two orders of magnitude longer and performed 
using SimOS’s fast emulation mode. 

loads, we were able to study issues like the CPU and memory over- 
heads of virtualization, the benefits on scalability, and NUMA 
memory management. However, studies that would require long 
running workloads, such as those fully evaluating Disco’s resource 
sharing policies, are not possible in this environment and will hence 
have to wait until we have a real machine. 

Table 1 lists the workloads of this study together with their 
base simulated execution time. The workloads were chosen to be 
representative of four typical uses of scalable compute servers. Al- 
though the simulated execution times are small, the SimOS envi- 
ronment allowed us to study the workload’s behavior in great detail 
and determine that the small execution regions exhibit similar be- 
havior to longer-running worklaods. We also used the fast mode of 
SimOS to ensure that the workloads did not include any cold start 
effects. 

5.2 Execution Overheads 

To evaluate the overheads of running on Disco, we ran each work- 
load on a uniprocessor, once using IRIX directly on the simulated 
hardware, and once using Disco running IRIX in a single virtual 
machine on the same hardware. Figure 5 shows this comparison. 
Overall, the overhead of virtualization ranges from a modest 3% for 

Raytrace to a high of 16% in the pmake and database workloads. 
For the compute-bound engineering and Raytrace workloads, the 
overheads are mainly due to the Disco trap emulation of TLB reload 
misses. The engineering and database workloads have an excep- 
tionally high TLB miss rate and hence suffer large overheads. Nev- 
ertheless, the overheads of virtualization for these applications are 
less than 16%. 

The heavy use of OS services for file system and process cre- 
ation in the pmake workload makes it a particularly stressful work- 
load for Disco. Table 2 shows the effect of the monitor overhead on 
the top OS services. From this table we see the overheads can sig- 
nificantly lengthen system services and trap handling. Short run- 
ning services such as the IRIX quick page fault handler, where the 
trap overhead itself is a significant portion of the service, show 
slowdowns over a factor of 3. Even longer running services such as 
execve and open system call show slowdowns of 1.6. 

These slowdowns can be explained by the common path to en- 
ter and leave the kernel for all page faults, system calls and inter- 
rupts. This path includes many privileged instructions that must be 
individually emulated by Disco. A restructuring of the HAL of 
IRIX could remove most of this overhead. For example, IRIX uses 
the same TLB wired entry for different purposes in user mode and 
in the kernel. The path on each kernel entry and exit contains many 

Re lathe Execution Time on Disco 

Operating System 
Service 

% of Avg Time 
System 

$f 
per Slowdown z .g -E: -2 

Time Invocation on z 3 3 

zI% ‘iii? 33 3 
k ? : 3 co-= 

? 
E2” s;lG lea 

0 m-1 Disco sz 
SwE 

E; :E g E& 

w &S 
*a m 
iz: 92 i! 

DEMAND-ZERO a 30% 21 cls 1.42 0.43 0.21 0.16 0.47 0.16 

QUICK-FAULT II-~--r 0% I 5N-s I 3.17 II 1.27 1 0.80 1 0.56 1 0.00 1 0.53 

open 9% 42~ 1 1.63 11 1.16 1 0.08 1 0.06 1 0.02 1 0.30 

UTLB-MISS 7% 0.035 ps 1 1.35 II 0.07 I 1.22 II 1 0.05 1 0.00 1 0.02 

2.14 11 1.01 1 0.24 1 0.21 1 0.31 1 0.17 

Table 2. Service Breakdown for the Pmake workload. This table breaks down the overheads of the virtualization for the seven top 
kernel services of the pmake workload. DEMAND-ZERO is demand zero page fault, QUICK-FAULT, is slow TLB refill, UTLB-MISS 
is a fast TLB refill. Other than the UTLB-MISS service, the IRIX and IRIX on Disco configurations request the same number of services 
of each category. For each service, the execution time is expressed as a fraction of the IRIX time and separates the time spend in the 
kernel, emulating TLB writes and privileged instructions, performing monitor call and emulating the unmapped segments. The slowdown 
column is the sum of the relative execution times and measures the average slowdown for each service. 
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FIGURE 5. Overhead of Virtualization. The figure compares, 
for four uniprocessor workloads, the execution time when running 
IRIX directly on the simulated hardware with IRIX running in a 
Disco virtual machine. The execution time is separated between 
the time spent in user programs, the IRIX kernel, Disco, and the 
idle loop. 

privileged instructions that deal exclusively with this feature and 
are individually emulated. 

We also notice the relatively high overhead of servicing kernel 
TLB-faults that occur since Disco runs IRIX in mapped addresses 
rather than the unmapped addresses used when running directly on 
the machine. This version of Disco only mapped 4KB page pairs 
into the TLB. The use of larger pages, supported by the MIPS TLB, 
could significantly reduce this overhead. Even with these large 
slowdowns, the operating system intensive pmake workload with 
its high trap and system call rate has an overhead of only 16%. 

Figure 5 also shows a reduction in overall kernel time of some 
workloads. Some of the work of the operating system is being han- 
dled directly by the monitor. The reduction in pmake is primarily 
due to the monitor initializing pages on behalf of the kernel and 
hence suffering the memory stall and instruction execution over- 
head of this operation. The reduction of kernel time in Raytrace, 
Engineering and Database workloads is due to the monitor’s sec- 
ond-level TLB handling most TLB misses. 

5.3 Memory Overheads 

To evaluate the effectiveness of Disco’s transparent memory shar- 
ing and quantify the memory overheads of running multiple virtual 
machines, we use a single workload running under six different sys- 
tem configurations. The workload consists of eight different in- 
stances of the basic pmake workload. Each pmake instance reads 
and writes files from a different disk. In all configurations we use 
an eight processor machine with 256 megabytes of memory and ten 
disks. 

The configurations differ in the number of virtual machines 
used and the access to the workload file systems. The Brst configu- 
ration (IRIX) runs IRIX on the bare hardware with all disks local. 
The next four configurations split the workload across one (IVM), 
two (2VMs), four (4VMs), and eight virtual machines (8VMs). 
Each VM has the virtual resources thaicorrespond to an equal frac- 
tion of the physical resources. As aresult, the total virtual processor 
and memory resources are equivalent to the total physical resources 
of the machine, i.e. eight processors and 256 MB of memory. For 
example, the 4VMs configuration consists of dual-processor virtual 
machines, each with 64 MB of memory. The root disk and work- 
load binaries are mounted from copy-on-write disks and shared 
among all the virtual machines. The workload file systems are 
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FIGURE 6. Data Shan’ng in Disco. This figure compares tho 

memory footprints of the different configurations of Section 5.3 
which run the pmake workload. For each configuration, “V” 
breaks down the virtual footprint of the system and “M” and actual 
machine memory footprint. The virtual footprint is equivalent to 
the amount of memory required in the absence of memory sharing 
optimizations. 

mounted from different private exclusive disks. 
The last configuration runs eight virtual machines but acccsscs 

workload files over NFS rather than from private disks, One of the 
eight virtual machines also serves as the NFS server for all file sysd 
terns and is configured with 96 megabytes of memory. The scvcn 
other virtual machines have only 32MB of memory. This results in 
more memory configured to virtual machines than is available on 
the real machine. This workload shows the ability to share the file 
cache using standard distributed system protocols such as NFS. 

Figure 6 compares the memory footprint of each configuration 
at the end of the workload. The virtual physical footprint (V) is the 
amount of memory that would be needed if Disco did not support 
any sharing across virtual machines. The machine footprint (M) is 
the amount of memory actually needed with the sharing optimiza- 
tions. Pages are divided between the IRIX data stntctures, the IRIX 
text, the tile system buffer cache and the Disco monitor itself. 

Overall, we see that the effective sharing of the kemcl text and 
buffer cache limits the memory overheads of running multiple vir- 
tual machines. The read-shared data is kept in a single location in 
memory. 

The kernel private data is however not shareable across virtual 
machines. The footprint of the kernel private data increases with the 
number of virtual machines, but remains overall small. For the clght 
virtual machine configuration, the eight copies of IRIX’s data struc- 
tures take less than 20 megabytes of memory. 

In the NFS contiguration. the virtual buffer cache is larger than 
the comparable local configuration as the server holds a copy of all 
workload files. However, that data is transparently shared with the 
clients and the machine buffer cache is of comparable size to the 
other configurations. Even using a standard distributed file system 
such as NFS, Disco can maintain a global buffer cache and avoid 
the memory overheads associated with multiple caching of data. 

5.4 ScaIabiIity 

To demonstrate the scalability benefits of using virtual machine 
monitors we ran the pmake workload under the six configurations 
described in the previous section. IRIX.5.3 is not a NUMA-aware 
kernel and tends to allocate its kernel data structures from a single 
node of FLASH causing large hot-spots. To compensate for this, we 
changed the physical memory layout of FLASH so that machine 
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FIGURE 7. Workload ScaIability Under Disco. The perfor- 
mance of the pmake and radix workloads on an eight-processor 
ccNUMA machine is normalized to the execution time running 
IRIX on the bare hardware. Radix runs on IRIX directly on top of 
the hardware and on a specialized OS (SPLASHOS) on top of 
Disco in a single virtual machine. For each workload the execu- 
tion is broken down into user time, kernel time, time synchroniza- 
tion time, monitor time, and the idle loop. All configurations use 
the same physical resources, eight processors and 256MB of 
memory, but use a different number of virtual machines. 

pages are allocated to nodes in a round-robin fashion. This round- 
robin allocation eliminates hot spots and results in significantly bet- 
ter performance for the IRIX runs. Since Disco is NUMA-aware, 
we were able to use the actual layout of machine memory, which al- 
locates consecutive pages to each node. To further simplify the 
comparison, we disabled dynamic page migration and replication 
for the Disco runs. 

Figure 7 shows the execution time of each workload. Even at 
just eight processors, IRIX suffers from high synchronization and 
memory system overheads for system-intensive workloads such as 
this. For example, about one quarter of the,overall time is spent in 
the kernel synchronization routines and the 67% of the remaining 
kernel time is spent stalled in the memory system on communica- 
tion misses. The version of IRIX that we used has a known primary 
scalability bottleneck, memlock, the spinIock that protects the mem- 
ory management data structures of IRIX [23]. Other operating sys- 
tems such as NT also have comparable scalability problems, even 
with small numbers of processors [21]. 

Using a single virtual machine leads to higher overheads than 
in the comparable uniprocessor Pmake workload. The increase is 
primarily due to additional idle time. The execution of the operating 
system in general and of the critical regions in particular is slower 
on top of Disco, which increases the contention for semaphores and 
spinlocks in the operating system. For this workload, the increased 
idle time is due to additional contention on certain semaphores that 
protect the virtual memory subsystem of IRIX, forcing more pro- 
cesses to be descheduled. This interaction causes a non-linear effect 
in the overheads of virtualization. 

However, partitioning the problem into different virhd ma- 
chines significantly improves the scalability of the system. With 
only two virtual machines, the scalability benefits already outweigh 
the overheads of the virtualization. When using eight virtual ma- 
chines, the execution time is reduced to 60% of its base execution 
time, primarily because of a significant reduction in the kernel stall 
time and kernel synchronization. 

We see significant performance improvement even when ac- 
cessing files using NFS. In the NFS configuration we see an in- 
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FIGURE 8. Performance Benefits of Page Migration and 
Replication. For each workload, the tigure compares the execu- 
tion time of IRIX on NUMA, IRIX on Disco on NUMA with page 
migration and replication, and IRIX on an bus-based UMA, The 
execution time is divided between instruction execution time, lo- 
cal memory stall time, remote memory stall time, and Disco over- 
head. The percentage of cache misses satisfied locally is shown 
below each bar. 

crease in the idle time that is primarily due to the serialization of 
NFS requests on the single server that manages all eight disks. Even 
with the overheads of the NFS protocol and the increase in idle 
time, this configuration executes faster than the base IRIX time. 

The other workload of Figure 7 compares the performance of 
the radix sorting algorithm, one of the SPLASH-2 applications [U]. 
Radix has an unfortunate interaction with the lazy evaluation poli- 
cies of the IRIX virtual memory system. IRIX defers setting up the 
page table entries of each parallel thread until the memory is 
touched by the thread. When the sorting phase starts, all threads suf- 
fer many page faults on the same region causing serialization on the 
various spinlocks and semaphores used to protect virtual memory 
data structures. The contention makes the execution of these traps 
significant in comparison to, the work Radix does for each page 
touched. The result is Radix spends one half of its time in the oper- 
ating system. 

Although it would not have been difficult to modify Radix to 
setup its threads differently to avoid this problem, other examples 
are not as easy to fix. Rather than modifying Radix, we ran it on top 
of SPLASHOS rather than IRIX. Because it does not manage virtu- 
al memory, SPLASHOS does not suffer from the same perfor- 
mance problems as IRIX. Figure 7 shows the drastic performance 
improvements of running the application in a specialized operating 
system (on top of Disco) over using a full-blown operating system 
(without Disco). Both configurations suffer from the same number 
of page faults, whose processing accounts for most of the system 
time. This system time is one order of magnitude larger for IRIX 
than it is for SPLASHOS on top of Disco. The NUMA-aware allo- 
cation policy of Disco also reduces hot spots and improves user stall 
time. 

5.5 Dynamic Page Migration and Replication 

To show the benefits of Disco’s page migration and replication im- 
plementation, we concentrate on workloads that exhibit poor mem- 
ory system behavior, specifically the Engineering and Raytrace 
workloads. The Engineering workload consists of six Verilog sim- 
ulations and six memory system simulations on eight processors of 
the same virtual machine. The Raytrace workload spans 16 proces- 
sors. Because Raytrace’s largest available data set fully tits in a 
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Table 3. Action taken on hot pages. This table shows the num- 
ber of migrations and replications per second and their average la- 
tency for the two workloads. 

IMB cache, we ran the Raytrace experiments with a 256KB cache 
to show the impact of data locality. 

Figure 8 shows the overall reduction in execution time of the 
workload. Each workload is run under IRIX, IRIX on Disco with 
migration and replication, and IRIX on a UMA memory system. 
The UMA memory system has a latency of 300ns equivalent to the 
local latency of the NUMA machine. As a result, the performance 
on the UMA machine determines a lower bound for the execution 
time on the NUMA machine. The comparison between Disco and 
the NUMA IRIX run shows the benefits of page migration and rep- 
lication while the comparison with the UMA IRIX run shows how 
close Disco got to completely hiding the NUMA memory system 
from the workload. 

Disco achieves significant performance improvements by en- 
hancing the memory locality of these workloads. The Engineeridg 
workload sees a 33% performance improvement while Raytrace 
gets a 38% improvement. Both user and kernel modes see a sub- 
stantial reduction in remote stall time, Disco increases data locality 
by satisfying a large fraction of the cache misses from local memo- 
ry with only a small increase in Disco’s overhead. 

Although Disco cannot totally hide all the NUMA memory la- 
tencies from the kernel, it does greatly improve the situation. Com- 
paring Disco’s performance with that of the optimistic UMA where 
all cache misses are satisfied in 300 nanoseconds, Disco comes 
within 40% for the Engineering workload and 26% for Raytrace. 

Our implementation of page migration and replication in Dis- 
co is significantIy faster than a comparable kernel 
implementation [26]. This improvement is due to Disco’s stream- 
lined data structures and optimized TLB shootdown mechanisms. 
As a result, Disco can be more aggressive in its policy decisions and 
provide better data locality, Table 3 lists the frequency and latency 
of page migrations and replications for both workloads. 

6 Related Work 
We start by comparing Disco’s approach to building system soft- 
ware for large-scale shared-memory multiprocessors with other re- 
search and commercial projects that target the same class of 
machines. We then compare Disco to virtual machine monitors and 
to other system software structuring techniques. Finally, we com- 
pare our implementation of dynamic page migration and replication 
with previous work. 

6.1 System Software for Scalable Shared Memory 
Machines 

Two opposite approaches are currently being taken to deal with the 
system software challenges of scalable shared-memory multipro- 
cessors. The first one is to throw a large OS development effort at 
the problem and effectively address these challenges in the operat- 
ing system. Examples of this approach are the Hive [5] and Hurri- 
cane [25] research prototypes and the Cellular-IRIX system 
recently announced by SGI. These multi-kernel operating systems 
handle the scalability of the machine by partitioning resources into 
“cells” that communicate to manage the hardware resources effi- 
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ciently and export a single system image, effectively hiding the dls- 
tributed system from the user. In Hive, the cells arc also used to 
contain faults within cell boundaries. In addition, these systems in- 
corporate resource allocators and schedulers for processors and 
memory that can handle the scalability and the NUMA aspects of 
the machine. This approach is innovative, but requires a large dc- 
velopment effort. 

The virtual machines of Disco are similar to the cells of Hive 
and Cellular-IRIX in that they support scalability and form system 
software fault containment boundaries. Like these systems, Disco 
can balance the allocation of resources such as processors and 
memory between these units of scalability. Also like these systems, 
Disco handles the NUMA memory management by doing careful 
page migration and replication. The benefit of Disco over the OS 
intensive approach is in the reduction in OS development effort. It 
provides a large fraction of the benelits of these systems at a frac- 
tion of the cost. Unlike the OS-intensive approach that is tied to a 
particular operating system, Disco is independent of any particular 
OS, and can even support different OSes concurrently. 

The second approach is to statically partition the machine and 
run multiple, independent operating systems that use distributed 
system protocols to export a partial single system image to the us- 
ers. An example of this approach is the Sun Enterprise10000 ma- 
chine that handles software scalability and hardware reliability by 
allowing users to hard partition the machine into independent fail- 
ure units each running a copy of the Solaris operating system. Users 
still benefit from the tight coupling of the machine, but cannot dy- 
namically adapt the partitioning to the load of the different units, 
This approach favors low implementation cost and compatibility 
over innovation. 

Like the hard partitioning approach, Disco only requires min- 
imal OS changes. Although short of providing a full single system 
image, both systems build a partial single system image using stan- 
dard distributed systems protocols. For example. a single file sys- 
tem image is built using NFS. A single system administration 
interface is built using NIS. System administration is simplified in 
Disco by the use of shared copy-on-write disks that are shared by 
many virtual machines. 

Yet, unlike the hard partitioning approach, Disco can share all 
the resources between the virtual machines and supports highly dy- 
namic reconfiguration of the machine. The support of a shared buff- 
er cache and the ability to schedule all the resources of the machine 
between the virtual machines allows Disco to excel on workloads 
that would not perform well with a relatively static partitioning. 
Furthermore, Disco provides the ability for a single application to 
span all resources of the machine using a specialized scalable OS. 

Digital’s announced Galaxies operating system, a multi-kemcl 
version of VMS, also partitions the machine relatively statically 
like the Sun machine, with the additional support for segment ddv- 
ers that allow applications to share memory across partitions. Gal- 
axies reserves a portion of the physical memory of the machine for 
this purpose. A comparable implementation of application-level 
shared’memory between virtual machines would be simple and 
would not require having to reserve memory in advance. 

Disco is a compromise between the OS-intensive and the OS- 
light approaches. Given an infinite OS development budget, the OS 
is the right place to deal with issues such as resource management, 
The high-IeveI knowledge and greater control available in the oper- 
ating system can allow it to export a single system image and devcl- 
op better resource management mechanisms and policies. 
Fortunately, Disco is capable of gradually getting out of the way as 
the OS improves. Operating systems with improved scalability can 
just request larger virtual machines that manage more of the ma- 
chine’s resources. Disco provides an adequate and low-cost solu- 
tion that enables a smooth transition and maintains compatibility 
with commodity operating systems. 



6.2 Virtual Machine Monitors 

Disco is a virtual machine*monitor that implements in software a 
virtual machine identical to the underlying hardware. The approach 
itself is far from being novel. Golberg’s 1974 survey paper [13] lists 
over 70 research papers on the topic and IBM’s VM/370 [IS] sys- 
tem was introduced in the same period. Disco shares the same ap- 
proach and features as these systems, and includes many of the 
same performance optimizations as VM/370 [S]. Both allow the si- 
multaneous execution of independent operating systems by virtual- 
izing all the hardware resources. Both can attach I/O devices to 
single virtual machines in an exclusive mode. VM/370 mapped vir- 
tual disks to distinct volumes (partitions), whereas Disco has the 
notion of shared copy-on-write disks. Both systems support a com- 
bination of persistent disks and temporary disks. Interestingly, 
Creasy argues in his 1981 paper that the technology developed to 
interconnect virtual machines will later allow the interconnection of 
real machines [S]. The opposite occurred and Disco benefits today 
from the advances in distributed systems protocols. 

The basic approach used in Disco as well as many of its per- 
formance optimizations were present in VM/370 and other virtual 
machines. Disco differs in its support of scalable shared-memory 
multiprocessors, handling of modem operating systems, and the 
transparent sharing capabilities of copy-on-write disks and the glo- 
bal buffer cache. 

The idea of virtual machines remains popular to provide back- 
ward compatibility for legacy applications or architectures. Mi- 
crosoft’s Windows 95 operating system [16] uses virtual machines 
to run older Windows 3.1 and DOS applications. Disco differs in 
that it runs all the system software in a virtual machine and not just 
the legacy applications. DAISY [IO] uses dynamic compilation 
techniques to run a single virtual machine with a different instruc- 
tion set architecture than the host processor. Disco exports the same 
instruction set as the underlying hardware and can therefore use di- 
rect execution rather than dynamic compilation. 

Virtual machine monitors have been recently used to provide 
fault-tolerance to sensitive applications [3]. Bressoud and 
Schneider’s system virtualizes only certain resources of the ma- 
chine, specifically the interrupt architecture. By running the OS in 
supervisor mode, it disables direct access to I/O resources and phys- 
ical memory, without having to virtualize them. While this is suffi- 
cient to provide fault-tolerance, it does not allow concurrent virtual 
machines to coexist. 

6.3 Other System Software Structuring Techniques 

As an operating system structuring technique, Disco could be de- 
scribed as a microkernel with an unimaginative interface. Rather 
than developing the clean and elegant interface used by microker- 
nels, Disco simply mirrors the interface of the raw hardware. By 
supporting different commodity and specialized operating systems, 
Disco also shares with microkernels the idea of supporting multiple 
operating system personalities [l]. 

It is interesting to compare Disco with Exokemel [ 1 1], a soft- 
ware architecture that allows application-level resource manage- 
ment. The Exokemel safely multiplexes resources between user- 
level library operating systems. Both Disco and Exokemel support 
specialized operating systems such as ExOS for the Aegis exoker- 
nel and SplashOS for Disco. These specialized operating systems 
enable superior performance since they are freed from the general 
overheads of commodity operating systems. Disco differs from Ex- 
okemel in that it virtualizes resources rather than multiplexes them, 
and can therefore run commodity operating systems without signif- 
icant modifications. 

The Fluke system [12] uses the virtual machine approach to 
build modular and extensible operating systems. Recursive virtual 
machines are implemented by their nested process model, and effi- 

ciency is preserved by allowing inner virtual machines to directly 
access the underlying microkernel of the machine. Ford et al. show 
that specialized system functions such as checkpointing and migra- 
tion require complete state encapsulation. Like Fluke, Disco totally 
encapsulates the state of virtual machines, and can therefore trivial- 
ly implement these functions. 

6.4 ccNUMA Memory Management 

Disco provides a complete ccNUMA memory management facility 
that includes page placement as well as a dynamic page migration 
and page replication policy. Dynamic page migration and replica- 
tion was first implemented in operating systems for machines that 
were not cache-coherent, such as the IBM Ace [2] or the BBN But- 
terfly [7]. In these systems, migration and replication is triggered by 
page faults and the penalty of having poor data locality is greater 
due to the absence of caches. 

The implementation in Disco is most closely related to our 
kernel implementation in [26]. Both projects target the FLASH 
multiprocessor. Since the machine supports cache-coherency, page 
movement is only a performance optimization. Our policies are de- 
rived from this earlier work. Unlike the in-kernel implementation 
that added NUMA awareness to an existing operating system, our 
implementation of Disco was designed with these features in mind 
from the beginning, resulting in lower overheads. 

7 Conclusions 
This paper tackles the problem.of developing system software for 
scalable shared memory multiprocessors without a massive devel- 
opment effort. Our solution involves adding a level of indirection 
between commodity operating systems and the raw hardware. This 
level of indirection uses another old idea, virtual machine monitors, 
to hide the novel aspects of the machine such as its size and 
NUMA-ness. 

In a prototype implementation called Disco, we show that 
many of the problems of traditional virtual machines are no longer 
significant. Our experiments show that the overheads imposed by 
the virtualization are modest both in terms of processing time and 
memory footprint. Disco uses a combination of innovative emula- 
tion of the DMA engine and standard distributed file system proto- 
cols to support a global buffer cache that is transparently shared 
across all virtual machines. We show how the approach provides a 
simple solution to the scalability, reliability and NUMA manage- 
ment problems otherwise faced by the system software of large- 
scale machines. 

Although Disco was designed to exploit shared-memory mul- 
tiprocessors, the techniques it uses also apply to more loosely-cou- 
pled environments such as networks of workstations (NOW). 
Operations that are difficult to retrofit into clusters of existing op- 
erating systems such as checkpointing and process migration can be 
easily supported with a Disco-like monitor. As with shared-memo- 
ry multiprocessors, this can be done with a low implementation cost 
and using commodity operating systems. 

This return to virtual machine monitors is driven by a current 
trend in computer systems. While operating systems and applica- 
tion programs continue to grow in size and complexity, the ma- 
chine-level interface has remained fairly simple. Software written 
to operate at this level remains simple, yet provides the necessary 
compatibility to leverage the large existing body of operating sys- 
tems and application programs. We are interested in further explor- 
ing the use of virtual machine monitors as a way of dealing with the 
increasing complexity of modem computer systems. 
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