Transforming Imperfectly Nested Loops
Classes of loop transformations:
- **Iteration re-numbering**: (eg) loop interchange

 Example
  ```
  DO 10 J = 1,100
  DO 10 I = 1,100
  Y(I) = Y(I) + A(I,J)*X(J)
  10 Z(I) = ...
  ```
 vs
  ```
  DO 10 I = 1,100
  Y(I) = Y(I) + A(I,J)*X(J)
  10 Z(I) = ...
  ```
 All statements in body affected identically.

- **Statement re-ordering**: (eg) loop distribution/jamming

 Example
  ```
  DO 10 I = 1,100
  Y(I) = ...
  10 Z(I) = ...
  ```
 vs
  ```
  DO 10 I = 1,100
  Y(I) = ...
  10 Z(I) = ...
  ```
 Statement re-ordering can be static or dynamic
- **Statement transformation:**

 Example: scalar expansion

\[
\text{DO } 10 \ I = 1,100 \quad \text{DO } 10 \ I = 1,100 \\
T = f(I) \quad \text{vs} \quad T[I] = f(I) \\
10 \ X(I,J) = T*T \quad 10 \ X(I,J) = T[I]*T[I]
\]

Statements themselves are altered.
Iteration renumbering transformations

We have already studied linear loop transformations.

Index set splitting: \(N \rightarrow N1 + N2 \)

\[
\begin{align*}
\text{DO 10 I = 1, N} & \quad \text{DO 10 I = 1, N1} \\
10 & \quad 10 \\
\text{S} & \quad \text{S} \\
\end{align*}
\]

vs

\[
\begin{align*}
\text{DO 20 I = N1+1, N} & \quad \text{vs} \\
10 & \quad 10 \\
\text{S} & \quad \text{S} \\
\end{align*}
\]

Special case: loop peeling - only the first/last/both first and last iterations are done separately from main loop.

Legality: always legal
Typical use: Eliminate a ‘problem iteration’

```
DO 10 I = 1, N
10 X(aI + b) = X(c) + .... vs
```

Weak SIV subscript: dependence equation is \(aI_w + b = c \)

\[\Rightarrow I_w = \frac{(c - b)}{a} \]

Split index set of loop into 3 parts:
- DO-ALL loop that does all iterations before \(I_w \)
- Iteration \(I_w \) by itself
- DO-ALL loop that does all iterations after \(I_w \)

Note: distance/direction are not adequate abstractions
Strip-mining: \(N = N_1 \times N_2 \)

```
DO 10 I = 1, N
10 Y(I) = X(I) + 1
DO 10 I = Is, min(Is + s - 1, N)
10 Y(I) = X(I) + 1
```

Inner loop does ‘s’ iterations at a time.

Important transformation for vector machines:

‘s’ = vector register length

Strip-mining is always legal.
To get clean bounds for inner loop, do last ‘N mod s’ iterations separately: index-set splitting

DO 10 Is = 1, N, s
 DO 10 I = Is, min(Is + s - 1, N)
 10 Y(I) = X(I) + 1

=>

DO 10 Is = 1, s*(N div s)
 DO 10 I = Is, Is + s - 1
 10 Y(I) = X(I) + 1

DO 20 I = (N div s)*s + 1 to N
 20 Y(I) = X(I) + 1
Tiling: multi-dimensional strip-mining $N1XN2 = t1 \times t2 \times N3 \times N4$

Old names for tiling: stripmine and interchange, loop quantization
Statement Sinking: useful for converting some imperfectly-nested loops into perfectly-nested ones

```plaintext
do k = 1, N
   A(k,k) = sqrt (A(k,k))
   do i = k+1, N
      A(i,k) = A(i,k) / A(k,k)  <---- sink into inner loop
      do j = k+1, i
         A(i,j) -= A(i,k) * A(j,k)
   do k = 1, N
   A(k,k) = sqrt (A(k,k))
   do i = k+1, N
      do j = k, i
         if (j==k) A(i,k) = A(i,k) / A(k,k)
         if (j!=k) A(i,j) -= A(i,k) * A(j,k)
```

=>

```plaintext
do k = 1, N
   A(k,k) = sqrt (A(k,k))
   do i = k+1, N
      do j = k, i
         if (j==k) A(i,k) = A(i,k) / A(k,k)
         if (j!=k) A(i,j) -= A(i,k) * A(j,k)
```
Basic idea of statement sinking:

1. Execute a pre/post-iteration of loop in which only sunk statement is executed.
2. Requires insertion of guards for all statements in new loop.

Singly-nested loop (SNL): imperfectly-nested loop in which each loop has only one other loop nested immediately within it.

Locality enhancement of SNL’s in MIPSPro compiler:

- convert to perfectly-nested loop by statement sinking,
- locality-enhance perfectly-nested loop, and
- convert back to imperfectly-nested loop in code generation.
Statement Reordering Transformations

loop jamming/fusion \(\iff\) **loop distribution/fission**

Example

```plaintext
DO 10 I = 1,100
   Y(I) = ....
   10 Z(I) = ...Y(I)... vs. DO 20 J = 1,100
   20 Z(I) = ...Y(I)...

Utility of distribution: Can produce parallel loops as below

DO 10 I = 1, 100
   Y(I) = ....
   10 Z(I) = Y(I-1).... vs. DOALL 20 I’ = 1,100
   20 Z(I’) = Y(I’-1) ..... 

Loop fusion: promote reuse, eliminate array temporaries
**Legality of loop fission:** build the statement dependence graph

DO I = 1,N
A(I) = A(I) + B(I-1)
B(I) = C(I-1)*X + 1
C(I) = 1/B(I)
D(I) = sqrt(C(I))

DO I = 1,N
B(I) = C(I-1)*X + 1
C(I) = 1/B(I)
DO I = 1,N
A(I) = A(I)+B(I-1)
DO I = 1,N
D(I) = sqrt(C(I))

- Build the statement dependence graph:
  - nodes: assignment statements/if-then-else’s
  - edges: dependences between statements (distance/direction is irrelevant)

- Find the acyclic condensate of statement dependence graph

- Each node in acyclic condensate can become one loop nest

- Order of new loop nests: any topological sort of condensate

- Nested loop fission: do in inside-out order, treating inner loop nests as black boxes
Legality of loop fusion:

```
DO I = 1,N
 X(I) =
DO J = 1,N
 Y(J) = X(J+1)
```

Illegal

Usually, we do not compute dependences across different loop nests.
Easy to compute though:

Flow dependence: test for fusion preventing dependence

\[
I_w = J_r + 1
\]

\[
J_r < I_w
\]

\[
1 \leq I_w \leq N
\]

\[
1 \leq J_r \leq N
\]

Loop fusion is legal if
(i) loop bounds are identical
(ii) loops are adjacent
(iii) no fusion-preventing dependence
**Statement transformation:**

**Example:** scalar expansion

\[
\begin{align*}
\text{DO 10 I = 1,100} & \quad \text{DO 10 I = 1,100} \\
T = f(I) & \quad \text{vs} \quad T[I] = f(I) \\
10 \ X(I,J) = T*T & \quad 10 \ X(I,J) = T[I]*T[I]
\end{align*}
\]

Anti- and output-dependences (*resource dependences*) arise from "storage reuse" in imperative languages (cf. functional languages).

Eliminating resource dependences: eliminate storage reuse.

Standard transformations: scalar/array expansion (shown above)
We got into perfectly-nested loop transformations by studying the effect of interchange and tiling on key kernels like matrix-vector product and matrix-matrix multiplication.

Let us study how imperfectly-nested loop transformations can be applied to other key routines to get a feel for the issues in applying these transformations.
Cholesky factorization from a numerical analyst’s viewpoint:

- used to solve a system of linear equations $Ax = b$
- $A$ must be symmetric positive-definite
- compute $L$ such that $L \ast L^T = A$, overwriting lower-triangular part of $A$ with $L$
- obtain $x$ be solving two triangular systems
Cholesky factorization from a compiler writer’s viewpoint:

- Cholesky factorization has 6 loops like MMM, but loops are imperfectly-nested.
- All 6 permutations of these loops are legal.
- Variations of these 6 basic versions can be generated by transformations like loop distribution.
Column Cholesky: $kij$, right-looking versions

\[
\begin{align*}
d &\ k = 1, \ N \\
& \ A(k,k) = \text{sqrt} \ (A(k,k)) \ //\text{square root statement} \\
& \text{do } i = k+1, \ N \\
& \quad A(i,k) = A(i,k) / A(k,k) \ //\text{scale statement} \\
& \text{do } i = k+1, \ N \\
& \quad \quad \text{do } j = k+1, \ i \\
& \quad \quad \quad A(i,j) -= A(i,k) \ast A(j,k) \ //\text{update statement}
\end{align*}
\]

- Three assignment statements are called square root, scale and update statements.
- Compute columns of $L$ column-by-column (indexed by $k$).
- Eagerly update portion of matrix to right of current column.
- Note: most data references and computations in update.
Interchanging i and j loops in \textit{kij} version gives \textit{kji} version.

Update is performed row by row.

\begin{verbatim}
do k = 1, N
    A(k,k) = sqrt (A(k,k))
end do

   do i = k+1, N
    A(i,k) = A(i,k) / A(k,k)
   end do

   do j = k+1, N
        do i = j, N
            A(i,j) -= A(i,k) * A(j,k)
        end do
   end do
\end{verbatim}
Fusion of the two i loops in kij version produces a SNL.

\[
\begin{align*}
\text{do } & k = 1, N \\
A(k,k) & = \sqrt{A(k,k)} \\
\text{do } & i = k+1, N \\
A(i,k) & = A(i,k) / A(k,k) \\
\text{do } & j = k+1, i \\
A(i,j) & = A(i,k) * A(j,k)
\end{align*}
\]
Column Cholesky: jik left-looking versions

\[
\begin{align*}
\text{do } j &= 1, N \\
\text{do } i &= j, N \quad //\text{interchange } i \text{ and } k \text{ loops for } jki \text{ version} \\
\quad \text{do } k &= 1, j-1 \\
& \quad A(i,j) \leftarrow A(i,k) \times A(j,k) \\
& \quad A(j,j) = \sqrt{A(j,j)} \\
\text{do } i &= j+1, N \\
& \quad A(i,j) = A(i,j) / A(j,j)
\end{align*}
\]

- Compute columns of L column-by-column.
- Updates to column are done lazily, not eagerly.
- To compute column j, portion of matrix to left of column is used to update current column.
Row Cholesky versions

for each element in row $i$
- find inner-product of two blue vectors
- update element $x$
- scale
- take square-root at end

These compute the matrix $L$ row by row. Here is $ijk$-version of row Cholesky.

```plaintext
do i = 1, N
do j = 1, i
 do k = 1, j-1
 $A(i,j) = A(i,k) \times A(j,k)$
 if (j < i) $A(i,j) = A(i,j)/A(j,j)$
 else $A(i,i) = \text{sqrt} \ (A(i,i))$
```
Locality enhancement in Cholesky factorization

- Most of data accesses are in update step.
- Ideal situation: distribute loops to isolate update and tile update loops.
- Unfortunately, loop distribution is not legal because it requires delaying all the updates till the end.
do k = 1, N
   A(k,k) = sqrt (A(k,k))  //square root statement
   do i = k+1, N
      A(i,k) = A(i,k) / A(k,k)  //scale statement
   do i = k+1, N
      do j = k+1, i
         A(i,j) -= A(i,k) * A(j,k)  //update statement
   => loop distribution (illegal because of dependences)

do k = 1, N
   A(k,k) = sqrt (A(k,k))  //square root statement
   do i = k+1, N
      A(i,k) = A(i,k) / A(k,k)  //scale statement
   do k = 1, N
   do i = k+1, N
      do j = k+1, i
         A(i,j) -= A(i,k) * A(j,k)  //update statement
After distribution, we could have tiled update statement, and obtained great performance....

    do k = 1, N
        do i = k+1, N
            do j = k+1, i
                A(i,j) -= A(i,k) * A(j,k)  //update statement

Dependence vectors:

(A(i,j) -> A(i,j)):  (+,0,0)
(A(i,j) -> A(i,k)):  (+,0,+)
(A(i,j) -> A(j,k)):  (+,0+,+)
(A(i,j) -> A(j,k)):  (+,0+,+)
Let us study two distinct approaches to locality enhancement of Cholesky factorization:

- transformations to extract MMM computations hidden within Cholesky factorization: improvement of BLAS-3 content
- transformations to permit tiling of imperfectly-nested code
Key idea used in LAPACK library: ”partial” distribution

- do processing on block-columns
- do updates to block-columns lazily
- processing of a block-column:
  1. apply all delayed updates to current block-column
  2. perform square root, scale and local update steps on current block column

- Key point: applying delayed updates to current block-column can be performed by calling BLAS-3 matrix-matrix multiplication.

How do we think about this in terms of loop transformations?
Intermediate representation of Cholesky factorization

Perfectly-nested loop that performs Cholesky factorization:

```plaintext
do k = 1, N
 do i = k, N
 do j = k, i
 if (i == k && j == k) A(k,k) = sqrt (A(k,k));
 if (i < k && j == k) A(i,k) = A(i,k) / A(k,k);
 if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);
 enddo
enddo
dode
```

Easy to show that

- loop nest is fully permutable, and
- guards are mutually exclusive, so order of statement is irrelevant.
Generating intermediate form of Cholesky:

Converting kij-Fused version: only requires code sinking.

Converting kji version:

• interchange i and j loops to get kij version,
• apply loop fusion to i loops to get SNL, and
• use code sinking.

Converting other versions: much more challenging....
Convenient to express loop bounds of fully permutably perfectly nested loop in the following form:

\[
\text{do } \{i,j,k\} \text{ in } 1 \leq k \leq j \leq i \leq N
\]

\[
\begin{align*}
\text{if (} i == k \&\& j == k \text{)} & \quad A(k,k) = \sqrt{A(k,k)}; \\
\text{if (} i > k \&\& j == k \text{)} & \quad A(i,k) = A(i,k) / A(k,k); \\
\text{if (} i > k \&\& j > k \text{)} & \quad A(i,j) -= A(i,k) * A(j,k); \\
\end{align*}
\]
LAPACK-style blocking of intermediate form

Two levels of blocking:

1. convert to block-column computations to expose BLAS-3 computations
2. use handwritten codes to execute the BLAS-3 kernels
(1) Stripmine the j loop into blocks of size B:

    do js = 0, N/B -1  //js enumerates block columns
        do j = B*js +1, B*js+B
            do {i,k} in 1 <= k <= j <= i <= N

                if (i == k && j == k) A(k,k) = sqrt (A(k,k));
                if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);
                if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);

(2) Interchange the j loop into the innermost position:

    do js = 0, N/B -1
        do i = B*js +1, N
            do k = 1, min(i,B*js+B)
                do j = max(B*js +1,k), min(i,B*js+B)

                    if (i == k && j == k) A(k,k) = sqrt (A(k,k));
                    if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);
                    if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);
(3) Index-set split i loop into $B*js + 1:B*js + B$ and $B*js + B + 1:N$.
(4) Index-set split k loop into $1:B*js$ and $B*js + 1:min(i,B*js+B)$.

\[
\text{do } js = 0, \frac{N}{B} - 1
\]

//Computation 1: an MMM
\[
\text{do } i = B*js + 1, B*js + B
\]
\[
\text{do } k = 1,B*js
\]
\[
\text{do } j = B*js + 1,i
\]
\[
A(i,j) -= A(i,k) \times A(j,k);
\]

//Computation 2: a small Cholesky factorization
\[
\text{do } i = B*js + 1,B*js + B
\]
\[
\text{do } k = B*js + 1,i
\]
\[
\text{do } j = k,i
\]
\[
\text{if } (i == k \&\& j == k) \quad A(k,k) = \sqrt{A(k,k)};
\]
\[
\text{if } (i > k \&\& j == k) \quad A(i,k) = \frac{A(i,k)}{A(k,k)};
\]
\[
\text{if } (i > k \&\& j > k) \quad A(i,j) -= A(i,k) \times A(j,k);
\]
//Computation 3: an MMM
do i = B*js+ B+1,N
    do k = 1,B*js
        do j = B*js+1,B*js+B
            A(i,j) -= A(i,k) * A(j,k);
    
//Computation 4: a triangular solve
do i = B*js+ B+1,N
    do k = B*js+1,B*js+B
        do j = k,B*js+B
            if (j == k) A(i,k) = A(i,k) / A(k,k);
            if (j > k) A(i,j) -= A(i,k) * A(j,k);
Observations on code:

- Computations 1 and 3 are MMM. Call BLAS-3 kernel to execute them.

- Computation 4 is a block triangular-solve. Call BLAS-3 kernel to execute it.

- Only unblocked computations are in the small Cholesky factorization.
Critique of this development from compiler perspective:

- How does a compiler where BLAS-3 computations are hiding in complex codes?
- How do we recognize BLAS-3 operations when we expose them?
- How does a compiler synthesize such a complex sequence of transformations?
Compiler approach:

Tile the fully-permutable intermediate form of Cholesky:

\[
\begin{align*}
\text{do } \{\text{is,js,ks}\} & : 0 \leq ks \leq js \leq is \leq N/B - 1 \\
\text{do } \{i,j,k\} & : B*is < i \leq B*is + B \\
& \quad B*js < j \leq B*js + B \\
& \quad B*ks < k \leq B*ks + B \\
\text{if } (i == k && j == k) A(k,k) &= \sqrt{A(k,k)}; \\
\text{if } (i > k && j == k) A(i,k) &= A(i,k) / A(k,k); \\
\text{if } (i > k && j > k) A(i,j) &= A(i,k) \times A(j,k);
\end{align*}
\]

- Loop nest is,js,ks is fully permututable, as is i,j,k loop nest.
- Choose k,j,i order to get good spatial locality.
Strategy for locality-enhancement of imperfectly-nested loops:

1. Convert an imperfectly-nested loop into a perfectly-nested intermediate form with guards by code sinking/fusion/etc.
2. Transform intermediate form as before to enhance locality.
3. Convert resulting perfectly-nested loop with guards back into imperfectly-nested loop by index-set splitting/peeling.

How do we make all this work smoothly?