
Fault-Tolerant Execution of
Computationally and Storage
Intensive Parallel Programs Over A
Network Of Workstations: A Case
Study

J.A.Smith
S.K.Shrivastava

Broadcast Technical Report 103
Esprit Basic Research Project 6360
June 14, 1995



BROADCAST
Basic Research On Advanced Distributed Computing: from Algorithms

to SysTems
Esprit Basic Research Project 6360

BROADCAST will develop the principles for understanding, designing, and im-
plementing large scale distributed computing systems (LSDCS), in three broad
areas:

� Fundamental concepts. Evaluate and design computational paradigms
(such as ordering, causality, consensus); structuring models (groups and
fragmented objects); and algorithms (especially for consistency).

� Systems Architecture. Develop the architecture of LSDCS, in the areas
of: naming, identification, binding and locating objects in LSDCS; resource
management (e.g. garbage collection); communication and group manage-
ment. Solutions should scale and take into account fragmentation, and
recent technological developments (disconnectable devices and 64-bit address
spaces).

� Systems Engineering. Efficiently supporting the architecture, exploiting
the concepts and algorithms developed earlier, as kernel and storage support
for numerous fine-grain complex objects; and programming support tools for
building distributed applications.

The BROADCAST partners are: École Polytechnique Fédérale de Lausanne (EPFL,
Lausanne,Switzerland), Université Joseph Fourier, Institut d’Informatique et de Mathématiques
Appliquées de Grenoble (IMAG, Grenoble, France), Instituto de Engenharia de Sistemas
e Computadores (INESC, Lisboa, Portugal), Institut National de Recherche en Informa-
tique et Automatique (INRIA, Rocquencourt, France), Institut de Recherche en Infor-
matique et Sytèmes Aléatoires (IRISA, Rennes, France), Università di Bologna (Italy),
University of Newcastle-upon-Tyne (United Kingdom), and Universiteit van Twente
(the Netherlands).

For information, copies of the Broadcast Technical Reports, or to be put on the
Broadcast mailing list, please contact: Broadcast Secretariat, Department of Computing
Science, University of Newcastle-upon-Tyne, Claremont Road, Newcastle-upon-Tyne
NE1 7RU, UK. Tel.: +44 (91) 222-7827. Fax: +44 (91) 222-8232. E-mail: nick.cook@new-
castle.ac.uk.



The Broadcast Technical Reports Series

1 SSP Chains: Robust, Distributed References Supporting Acyclic Garbage Col-
lection, by Marc Shapiro, Peter Dickman, and David Plainfossé, November
1992

2 Consistent Global States of Distributed Systems: Fundamental Concepts and
Mechanisms, by Özalp Babaoğlu and Keith Marzullo, January 1993

3 Understanding Non-Blocking Atomic Commitment, by Özalp Babaoğlu and
Sam Toueg, January 1993

Broadcast Technical Reports can be ordered in hardcopy from the Broadcast Sec-
retariat. They are also available electronically: by anonymous FTP from server
broadcast.esprit.ec.org in directory projects/broadcast/reports; or through the
CaberNet Infrastructure AFS filesystem, in directory /afs/research.ec.org/pro-
jects/broadcast/reports.



Fault-Tolerant Execution of
Computationally and Storage Intensive
Parallel Programs Over A Network Of
Workstations: A Case Study

J.A.Smith S.K.Shrivastava
Department of Computing Science, The University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU UK

The paper considers the issues affecting the speedup attainable for computations that
are demanding in both storage and computing requirements, e.g. several hundred

megabytes of data and hours of computation time. Specifically, the paper investigates
the performance of matrix multiplication. A fault-tolerant system for the bag of tasks

computation structure using atomic actions (equivalent here to atomic
transactions) to operate on persistent objects. Experimental results are described.
Analysis, backed up by the experimental results, shows how best to structure such

computations for obtaining reasonable speedups.

1 Introduction
Where a network of workstations is employed for general purpose computing
to ensure that each user has a good interactive response, it is observed that
there are significant periods of inactivity, e.g. [19]. This gives rise to the
desire to exploit the idle workstations in a general purpose network to perform
computationally intensive work. Indeed there are many reports of encouraging
results obtained using large, and perhaps varying, numbers of workstations for
problems executed in this way.

Within a similar context, the work described here focuses on large compu-
tations where the data manipulated and communicated is also very large, and
scales with the problem, potentially exceeding bounds of primary storage, and
so employing disk storage. This paper addresses the question as to whether
there is potential gain to be made from executing such computations in such
an environment. The example application considered here is matrix multipli-
cation. As well as being data intensive, this is one of the class of embarrassingly
parallel applications which do not require synchronization between concurrent
processes during the course of the computation.

A simple analysis, backed up by experimental results, shows what sort
of speedup may be expected from the experimental configuration. The net-
work used consists of HP710 and HP730 workstations connected to a 10 Mbps
ethernet and is used in this establishment for general purpose computing.

As the scale of a distributed computation is increased in either the number of
participating nodes or its duration, the possibility of a failure occurring which
might affect the execution of the computation must increase. For example, the
owner of a workstation which is participating in a computation may choose to
reboot his machine. If it is not possible to tolerate such an event, it is necessary

1



to restart the entire computation. Whether the computation continues after
the fault or is restarted, application data structures on disk should be made
consistent.

The second aspect of the work described here attempts to address such
issues of fault tolerance through a fault-tolerant implementation of the well
known bag of tasks structure, which is described in [7]. The fault tolerance is
achieved through the use of atomic actions (equivalent here to atomic transactions)
to operate on persistent objects, encapsulated in C++ classes. An overview of
the use of objects and actions in structuring reliable distributed systems is given
in [21].

From the two threads of investigation in the paper it is finally possible to
make some comments on the potential for performing a computation such as
matrix multiplication in the way described.

For the purpose of the following discussion, a computation is described
as in-core if all state is accommodated in physical memory for its duration.
Likewise, a computation is referred to as out-of-core when, of the whole state
residing on secondary storage, only a part is ever resident in physical memory
at any time. The distinction is blurred in an environment which supports
a virtual address space exceeding physical memory size since data may be
declared larger than physical memory size and transparently paged in and
out as it is accessed. However, it is convenient to regard this configuration as
out-of-core.

2 Speedup Analysis
In absolute terms, the appropriate measure of speedup is that which relates the
performance of the parallel computation running on

�
processors to that of the

best possible sequential implementation. This is denoted
�������

0 � ��� (1)

where
�

0 is the elapsed time taken by the best sequential algorithm and
�	�

is
the time taken by the parallel algorithm running on

�
processors. This measure

describes the speedup realised through parallelizing the computation. An
alternative metric is the algorithmic speedup

¯������� 1 � ��� (2)

which relates the performance of the parallel implementation running with
one processor to the same implementation running with

�
processors. For an

ideally parallel application, when plotted against the number of processors,
either measure should exhibit a linear relationship with unit gradient, though
the latter has the value 1 for a single processor. For the purposes of this paper
the speedup referred to by default is the algorithmic speedup ¯��� and the former
referred to when necessary as the absolute speedup.

Where hierarchical memory storage is employed, it is found attractive to
employ blocked techniques, [12], to maximise locality and thereby gain great-
est benefit from caching. Such techniques decompose an operation on large
matrices into a combination of operations on smaller submatrices, or blocks.
These considerations have led to the development of high performance matrix
primitives such as the BLAS library. Also, a block structuring appears to scale
well, and so since the work here is concerned with operations on large ma-
trices a block oriented operation seems appropriate. In block oriented matrix
multiplication, each block in the product matrix is computed as the block dot

2



product of appropriate row of blocks in the first and column of blocks in the
second operand matrices. Each such block dot product may be computed in
parallel.

The computation is modelled in two stages. First it is assumed that all
matrices reside in memory on one machine, then subsequently the model is
refined such that all matrices reside on a disk connected to a single machine.
In the model, the user starts a Master process, M, which creates a collection of
slaves, S1-Sn, on separate workstationsto perform the computation in parallel,
see figure 1. The master statically partitions the computation and informs each
slave of its unique allocation of work. The three matrix objects are located on
one machine, initially assumed to reside in memory, but subsequently assumed
to reside on disk.

M S1 Sn

A, B

C

Input Matrices S1-Sn Slave

MasterOutput Matrix M

A, B, C

Figure 1. A Model for Distribution of Parallel Matrix Multiplication

It is assumed that all three matrices are square with � 2 elements and are
partitioned into � 2 blocks, each containing � 2

0 elements. A block is accessed
remotely with a cost ��� this being the memory to memory transfer time between
two machines, and assumed equal for put and get operations. It is assumed
that communication is through a common medium, here the ethernet and that
all such transfers are serialised so that the full bandwidth of the medium is
exploited for the duration of the transfer. This is because it is anticipated that
the potentially large number of collisions resulting from uncoordinated access
to the ethernet used in this experiment would be detrimental to performance.
Thus each block access operation implies sole access to the ethernet for its
duration. The time to compute the product of two blocks is ��� . A single
block of the output matrix is the dot product of entries in a block row of the
first, and block column of the second, input matrices. Therefore, the time to
compute a single block of the product of two square matrices of width � blocks
is � 2�	� 1 
����������� . Since there are � 2 blocks in the output matrix to be computed,
the time taken by a single slave to complete the computation when accessing
objects remotely is �

1
� � 2 ��� 2��� 1 
�������������
 (3)

The other parameter of interest is the attainable speedup with addition of
extra slave processes. As suggested earlier, for an ideally parallel application,
the speedup should be linear with unit gradient. However, in this experiment,
all communication is serialised and in addition the communication medium
has a limited bandwidth. In the presence of a solitary slave, the utilisation of

3



this medium is given by the ratio:

� ��� �������	�	
 ��� � � � � � � � � �	

� ��� ���� � � � �� � � �	

As the number of slaves is increased to
�

, this fraction increases by a factor
�

.
A limit occurs when the shared communications medium is fully utilized, such
that � � � ��� ���� � � � �� � � �	

� ��� �������	�	
 ��� � � � � � � � � �	 (4)

If more slaves are added beyond this point, then the total time taken in data
transport throughout the computation cannot decrease. In this very simpli-
fied model, speedup grows linearly up to the cut off point and then remains
constant. In the example of matrix multiplication described above, the task
communication time is � 2��� 1 
���� and the maximum speedup is:

¯����� � � 1 � �����
� 2��� 1 
���� (5)

The estimates computed so far do not take into account the cost of disk
access. For the second stage of analysis, a single disk store is assumed attached
to one of the machines which acts as a server. The input and output matrices
now reside on this disk. When accessed through a file system such as that of
UNIX, disk transfers are buffered and writes not necessarily completed before
a synchronising primitive such as sync(). Similarly input is via buffers which
effectively act as a cache. The filesystem cache is at the level of disk rather than
application level blocks, but clearly reading from cache is likely to be cheaper
than reading from disk. In following discussions unqualified references to
blocks always refer to application level blocks, i.e. submatrices. Separate terms
are introduced; ����� for reading a block from cache, ����� for reading a block from
disk and ��� for writing a block to disk. Initially, it is assumed still that complete
block accesses are serialised, such that the time to read a remote block is ����� � ���
from cache or ����� � ��� from disk and to write a remote block ��� � ��� . There are
two limiting cases, the first where all required blocks may be accomodated in
the cache such that the only disk access cost is to initialize the cache, and the
second where no benefit is gained from the cache.

� If it is assumed that all blocks are accomodated in the cache, then only the
initial read of a block is from disk. For this to be the case, the overall size of
the operand matrices must be small enough that both nay be accomodated
in cache. The total number of block reads is 2� 3 and the number of unique
blocks, and therefore the number of block reads which are from disk, is
2� 2. Then the single slave computation time is given by the following.

� 2 � 2 � ����� � � ��� 1 
������ � ����� 
 � ����� ��� ��������
 (6)

Similarly, the estimate for the maximum speedup is now

1 � �����
2 � ������� � ��� 1 
������ � ����� 
 � ����� ��� (7)

In this case, as the matrix size is increased and � becomes large, the
limiting speedup tends to:

1 � ���
2 � ����� ����� 
 (8)

4



� The other extreme is where all reads are from disk. This is the case if the
cache is not large enough to accomodate a single block. However, if even
a single block is accomodated in cache then there is some chance that two
slaves each request the same block, one after the other. Assuming, all
reads are from disk however, the single slave time is:

� 2 � 2� � ����� ����� 
 � ����� ��� � ������
 (9)

and the maximum speedup:

1 � �����
2� � ����� ����� 
 � ����� ��� (10)

with the limiting speedup being:

1 � ���
2 � ����� ����� 
 (11)

It is also possible to compute the expected time to perform the computation
out-of-core on a single machine, simply by removing the communication cost
from equation 6 or 9 respectively:

� 2 � 2 ��� ��� 1 
������ � ����� 
 � ��� ��������
 (12)

and
� 2 � 2������� � ��� � ������
 (13)

In the parallel configuration, performance is limited by the least of disk and
communication bandwidths. While write operations must at least eventually
be to remote disk, there is a possibility for allowing read operations to progress
in parallel with write operations if the server machine has large memory alloca-
tion. While caching inevitably occurs through file system buffer space, explicit
block level caching is not considered further in this paper.

Before actual values can be derived for the estimates above, it is necessary
to measure the various primitive operation times, ��� , ��� , etc. This is described,
in the remaining parts of this section.

2.1 Experimental Values
The machines to be employed in the computation are HP710 and HP730 work-
stations with 32 Mbytes and 64 Mbytes of physical memory respectively and
running HPUX 9.01. The block size is effectively bounded by memory avail-
ability. To perform a block product it is necessary to hold a little over two
blocks in memory. In addition, to compute a block dot product, the sum must
be held in memory. Since the compute machines are all HP710 workstations
with 32 Mbytes of memory, it seems unlikely that a block size of more than 1000
square, i.e. 8 Mbytes, may be employed.

2.1.1 Computation Cost
A matrix multiplication primitive is implemented as operator*=(), using the con-
ventional dot product algorithm, for a C++ template class, Matrix, instantiated
for double. The performance of this operation is shown in figure 2. The duration
of the entire computation is expected to be proportional to the cube of the matrix
width. For this selection of matrix sizes, this appears to be so, though perfor-
mance is better for small matrices, where presumably processor level caching is
of benefit. Since a 250 square matrix computation is completed in about 3.38s,
it appears that the effective computation rate for larger matrices is about 4.6

5



0.0001

0.001

0.01

0.1

1

10

100

1000

10000

10 100 1000 10000

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Matrix width (doubles)

hp710
hp730

Figure 2. In-core Matrix Multiplication. Both axes are logarithmic. The values plotted
in the graph are average of at least 10 measurements.

million floating point multiply operations per second. The implementation of
this operation aims to minimize the memory requirements for large matrices.
While some care is taken over the implementation, it is not claimed that no
further performance improvement may be gained, either through lower level
blocking to exploit processor cache or faster algorithm. Ultimately, it would
seem preferable to employ a library primitive, such as from BLAS.

2.1.2 Communication Cost
Assuming that the ethernet bandwidth of 10 Mbps may be used completely, a
transfer rate of 1.25 Mbytes per second is possible. A part of this bandwidth is
taken up with protocol headers however. A simple experiment is performed to
measure the practical transfer rate. The procedure is to make transfer by TCP,
setting up a new connection for each transfer. In general, such a procedure
is likely to be expensive, but here where all transfers are sizeable the cost is
acceptable. Employing no buffer copying at either end, the maximum rate
observed for transfers of 1 Mbyte upwards from memory on source machine
to memory on the destination machine is about 1 Mbyte per second. Both
machines are HP710. This is not inconsistent with a study of communication
rates in a range of network parallel programming environments, [10].

2.1.3 Disk Access Cost
The performance of various primitive disk operations is measured and the
results presented in Figures 3-5. Locally mounted disks are used for these
and subsequent tests, to avoid any further cost associated with NFS paths.
The operations measured are; write new file data, read file from disk cache,
read file from disk. It is assumed that application level block access equates to
these basic operations. These operations are timed on the two alternative disk
configurations used in subsequent experiments, i.e. 710 boot disk and a larger

6



0.1

1

10

100

1000

10000 100000 1e+06 1e+07 1e+08

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

File size (bytes)

hp710
hp730

Figure 3. Performance of write new file operation. The values plotted in the graph
are average of at least 3 measurements.

0.01

0.1

1

10

100

10000 100000 1e+06 1e+07 1e+08

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

File size (bytes)

hp710
hp730

Figure 4. Performance of disk file read operation. The values plotted in the graph are
average of at least 3 measurements.

7



0.0001

0.001

0.01

0.1

1

10

100

10000 100000 1e+06 1e+07 1e+08

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

File size (bytes)

hp710
hp730

Figure 5. Performance of cached file read operation. The values plotted in the graph
are average of at least 3 measurements.

disk mounted locally on /tmp on the HP730 machines.
It is seen that reading a cached file is over 10 times cheaper than reading the

same file from disk. The cost of reads in a particular computation is dependent
on the scale of the computation, i.e. the extent to which benefit is gained
from caching. This provides justification for considering the two extreme cases
earlier, though clearly it would be desirable to maximise cache benefit.

The remaining basic operation, which entails overwriting existing file space
with new data appears, through measurement, to have similar cost to the
disk read, but is not considered further in this particular application which is
creating a new matrix as the product of two existing matrices. The reason for
the significantly higher cost of writing new file space is presumably the need
to find free blocks and update file structure data.

For a large range of file sizes these results appear roughly linear. For a
first approximation it is possible to derive expressions in terms of � 0, the block
width in elements, for the disk access parameters, ��� , ����� , ����� by fitting lines
to the most linear range of each set of measurements. The range 100 Kbytes
to 10 Mbytes is employed in this work. While for smaller block sizes, there is
certainly some error, the smallest block size used in subsequent experiments is
125.

2.2 Application Level Measurements
A prototype of the computation is implemented based on the Arjuna tool
kit, [20]. Arjuna is a programming system which supports construction of
distributed applications which manipulate persistent objects (encapsulated in
C++ classes) using atomic actions. Typically, these facilities are employed to
implement a fault tolerant application, but this first implementation exploits
only support for persistent objects. The shared matrices A, B and C are each
implemented as a collection of persistent objects. Each such object encapsulates

8



an instance of the class Matrix mentioned in section 2.1.1. When not in use, the
state of a persistent object is held on disk storage in an object store. When an
object is activated, its state is loaded into an object server automatically. A single
server is employed to serve all matrices, thereby implementing the desired
arbitration of the ethernet. Distribution in Arjuna is supported through an
RPC, and the version employed here supports optional use of the TCP protocol
with connection establishment on a per-call basis. Some optimisation of this
RPC mechanism has been performed to exploit homogeneity of machines. In
this implementation, the slaves are created within separate processes forked by
the master at computation startup.

Available local disk space is limited to about 30 Mbytes on the hp710 ma-
chines. Since doubles are 8 bytes, a convenient size to choose for the matrices
is 1000 square. The total size of the data contained in the three matrices is
then 24 Mbytes and some space is required for object store overheads and the
bag object. Since the overall matrix size places an upper bound on the block
size for a given number of workers, it would be preferable to employ larger
matrices, but for even 1100 square matrices, the data space alone would be over
29 Mbytes. For the somewhat small size of 1000 square, the in-core sequential
time is measured at 221s on the HP710 machine.

In the graph shown in figure 6 measured times for the distributed computa-
tion run with two alternative block sizes are shown. The experiment employs

0

100

200

300

400

500

1 2 3 4 5 6

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Number of slaves

125
250

Figure 6. Parallel Multiplication of 1000 square Matrices with Block Sizes 125 and
250. The values plotted are averaged over 5 measurements.

1000 square matrices and block sizes, or granularities, of 125 and 250. The two
input matrices exist already on disk at the start of the computation, but the
output matrix is created in the course of the computation. Each slave is param-
eterized with the total number of slaves and a unique integer value between 0
and the number of slaves - 1. Then each slave computes a unique set of blocks
of the output matrix, and in the absence of failure, the computation completes.
From equations of section 2.1.3, the expected values of single slave time and

9



maximum speedup for both maximum and minimum disk cache benefit are
computed and tabulated in table 1 along with the measured values. For this

Block Derived Measured
Size all blocks cached no blocks cached

(bytes)
�

1 ¯����� � �
1 ¯����� � �

1 ¯����� �
125 381 2.31 476 1.83 461 2.0
250 348 2.64 386 2.27 368 2.3

Table 1. Comparison Of Derived And Measured Results: Single slave time,
�

1 in
hours and maximum speedup ¯������� for multiplication of 1000 square matrices

size of matrix, it seems reasonable to expect some benefit from cache hits.
Figure 7 shows measurements of the fault-tolerant multiplication of two

3000 square matrices, using block sizes 750 and 250. In this case, all shared
objects are co-located on a single HP730 machine. As before, derived and

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Number of slaves

750
250

Figure 7. Parallel Multiplication of 3000 square Matrices with Block Size 750. The
shared objects reside on a single HP730 machine.

measured values are compared in table 2. The measured single slave time is

Block Derived Measured
Size all blocks cached no blocks cached

(bytes)
�

1 ¯����� � �
1 ¯����� � �

1 ¯����� �
250 2.2 3.6 2.6 2.7 2.5 3.0
750 1.9 6.1 2.0 5.1 2.1 3.9

Table 2. Comparison Of Derived And Measured Results: Single slave time,
�

1 in
hours and maximum speedup ¯������� for multiplication of 3000 square matrices

seen to be about 2.1 hours and the maximum speedup estimated at about 3.9

10



The estimated in-core computation time is about 1.6 hours on a HP710 ma-
chine, suggesting an absolute speedup of about 3.0. On a HP730 machine the
estimated in-core computation time is about 1.1 hours, suggesting a speedup of
2.0. However, neither machine has sufficient memory to perform the compu-
tation in-core. Estimates of the expected duration of an out-of-core implemen-
tation of the computation on a HP730, with block size 750, may be computed
for either maximum or minimum cache benefit being approximately 1.25 and
1.33 hours respectively. These are compared with a measured value of about
1.4 hours. The most favourable speedup figure that may be claimed then is 2.6
over this latter value, though it is acknowledged that considerable resources
have been exploited in the effort. Work proceeds to attempt to explain observed
discrepancy between measured and derived results, hopefully identifying po-
tential savings in the implementation.

3 Fault Tolerant Matrix Multiplication
3.1 General Approach
The model shown in figure 1 is modified such that the master M places a
description of each of the tasks making up the whole computation into a shared
repository, called a bag. At the start of the computation, the master notifies
slaves of the location of the bag object as well as the computation data objects.
The slaves repeatedly withdraw a single task description at a time from the bag
and complete that task before returning to the bag for another task. The work is
thereby balanced between potentially heterogeneous machines. The simplest
configuration locates the bag of tasks on the same machine as the three matrix
objects.

A fairly common occurrence in a workstation cluster environment is the
failure, i.e. crash, or reboot of a single machine, so it seems desirable to be able
to tolerate such failures in a way other than restarting the whole computation.
It is assumed that any data in volatile storage is lost, but that held on disk
storage remains unaffected. There are then three areas of concern:

� A machine hosting a slave may fail between the point at which the slave
extracts a task from the bag and the point at which it completes writing
the outputs. In the event of such a failure, the task being performed is not
completed, though partial results may have been written.

� The machine hosting the shared objects may fail. Such a failure prohibits
any further progress by any of the slaves and any results not saved to
secondary storage are lost.

� The machine hosting the master, which initiates and subsequently waits
for completion of the computation may fail. If the required number of
slaves have been initiated before the failure, then the result is simply that
the user does not know of the outcome of the computation though the
computation may progress towards completion. However, if this is not
the case, then there may be no further progress although system resources
may remain in use.

There is thus a range of levels of fault tolerance which may be implemented
in a bag of tasks application. As mentioned earlier, fault tolerance in this work is
implemented through the use of atomic actions operating on persistent objects.
In object member functions, the programmer places lock requests, i.e. read or
write, to suit the semantics of the operation, and typically surrounds the code
within the function by an atomic action begin and end, i.e. commit, or abort.
The infrastructure manages the required access from and/or to disk based state.
Such objects may be distributed on separate machines. By enclosing calls to

11



multiple such distributed objects with another atomic action, it is possible to
ensure distributed consistency. An atomic action which is begun within such
a called function is said to nest within the surrounding action in the callee
function. If such a nested action is aborted, then locks obtained within the
action are released immediately. If the nested action is committed, such locks
are passed up to the parent action and so on and only actually released finally
when the top level, i.e. outermost, action commits. It is only at this point that
the effects of nested actions become visible. By contrast, if the top level action
is aborted, then the effects of all nested actions which have been committed
are recovered, i.e. undone. In the event of a callee machine failing part way
through a nested action at a remote site, that action is assumed to be aborted.

1. To tolerate failure of a slave, it is desirable for the task currently being
performed by that slave at the time of the failure to reappear in the bag,
while any work already done towards completion of that task by the failed
slave is recovered. The approach employed is therefore for the slave to
begin an atomic action before accessing an item of work from the bag,
and commit the action after writing the output generated by that work.

2. If the shared objects are replicated on multiple machines, then the failure
of such a machine may be tolerated.

3. To tolerate failure of the master process, the favoured approach here is to
define a computation object which contains a description of the compu-
tation and maintains its completion status. This object may be queried at
any time to determine the completion status of the computation, and may
be replicated for availability. Use of such a computation object also allows
processes on arbitrary machines to join in an ongoing computation.

A possible distribution of objects in a fully fault-tolerant parallel implemen-
tation of matrix multiplication which employs a bag of tasks for load balancing
is shown in figure 8.

S1 SnA,B,C,

T,M

A,B,C,

T,M

A,B

C

Input Matrices

Output Matrix

Bag of Tasks S1-Sn SlaveT

ComputationM

Figure 8. Possible Distribution of Objects in Fault-Tolerant Bag of Tasks Parallel
Matrix Multiplication. Shared objects are shown replicated for availability. Disks
which are shown dotted are not used explicitly by the application

In this experiment a block structured algorithm is employed,so a task entails
computation of a block of the output matrix, which is the block dot product
of a block row of the first input matrix and block column of the second input
matrix.

12



3.2 Implementation
The implementation of parallel matrix multiplication described in section 2.1
has been enhanced by the addition of a prototype recoverable queue, imple-
mented as a composite persistent object containing separately lockable links
and elements. A task is executed by a slave within the scope of an atomic
action and involves calling the dequeue() operation of the queue to obtain the
next available task description, performing the corresponding calculation, then
storing the results in the output matrix.

3.2.1 Bag of Tasks
The requirements of a recoverable bag are similar to the specification of a
semiqueue in [23]. A convenient structure with which to implement the bag
in Arjuna is a recoverable queue, similar to that described in [5], which may
be regarded as a possible implementation of a semiqueue. Unlike a traditional
queue which is strictly FIFO, a recoverable queue relaxes the ordering prop-
erty to suit its use in a transactional environment. If an element is dequeued
within a transaction, then that element is write-locked immediately, but only
actually dequeued at the time the transaction commits. Similar use of recov-
erable queues with multiple servers in asynchronous transaction processing is
described in [13], so only a brief description is given here through an example.

(c)(b)(a)

s1 s1

s2s2

e3 e2 e1 e3 e2 e1 e3 e2 e1

s2

Figure 9. Operation of a Recoverable Queue

In figure 9(a), two processes, s1 and s2, are shown having dequeued el-
ements from this queue, e1 and e2 respectively. In the absence of failures,
say s1 completes processing e1 before s2 completes processing e2, then s1
processes e3. However, figure 9(b) shows s1 having failed and its partially
completed work aborted, such that e1 is unlocked and so available for subse-
quent dequeue. Figure 9(c) shows s2 having completed processing of e2, now
processing e1.

3.2.2 Slave
After binding to a set of shared objects, the slave executes a loop which repeat-
edly dequeues a task from the queue, fetches the appropriate parts of the input
matrix and computes and writes out the corresponding part of the result. Each
such iteration is contained within an atomic action. This atomic action guar-
antees that the slave has free access to the corresponding block of the output

13



matrix until commit or abort. Any failure of the slave leads to abort of the
action, such that any uncommitted output, together with the corresponding
dequeue() operation is recovered, leaving the unfinished task in the queue to be
performed by another slave.

In database terms, the slave is coordinator for the atomic action, so that a
failure of slave is failure of coordinator. In a database application, the coordina-
tor is required to ensure eventual outcome is consistent with notification to an
operator and achieves this through a persistent record called an intentions list
written during first phase of two phase commit protocol. This record is used to
ensure the action is completed consistently with operator wishes, or a failure
notice given, in the event of crashes at either coordinator or participant sites.
However, complete knowledge of the action resides only at the coordinator
site, so the action blocks during failure of its coordinator. Such behaviour is
not desirable here, where the intention is for an alternative slave to redo such a
failed task. The application described here is similar to the asynchronous trans-
action processing referred to earlier in that the coordinator is driven entirely by
the contents of the queue entry. In the former case, a response to an operator
may be placed in a separate reponse queue, but in an application of the type
described in this work this does not appear generally useful. The correctness
requirements are similar however, in that the work description must remain
in the queue until corresponding work is completed. Since each task entails
computing from read only parameters a unique block of the ouput matrix and
then writing it, idempotency is guarenteed. Therefore correctness of queue
operation in this application may be ensured by careful ordering of updates
during commit processing.

Termination of the computation is detected by testing whether the queue is
actually empty or not, as distinct from the condition where no element may be
dequeued but the queue is not yet empty.

3.3 Measurements
A rough measurement of the cost of employing this implementation of a re-
coverable queue may be obtained by performing fault tolerant and non fault
tolerant sequential computations and recording the difference in elapsed times.
This is done for multiplication of 1000 square matrices on HP710 and the results
shown in table 3. In figure 10 it is seen that the cost of fault tolerance remains

Fault Tolerance Overhead
Block
Size

(bytes)

Items of
Work

During
Queue

Creation
(seconds)

During
Computation

(seconds)

Total as %
of Total
Elapsed

Time
125 64 55 37 18
200 25 23 15 9.6
250 16 15 17 8.5
500 4 5 18 6.4

Table 3. Cost of Employing Queue in Sequential Multiplication of 1000 Square
Matrices

fairly constant for varying number of slaves.
The percentage overhead is relatively high in the above examples because

the computation is of small scale. The cost of using the queue is dependent on
the number of tasks, rather than the matrix size.

14



0

100

200

300

400

500

1 2 3 4 5 6

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

Number of slaves

250 non fault-tolerant
250 fault-tolerant

125 non fault-tolerant
125 fault-tolerant

Figure 10. Fault Tolerance Cost in Parallel Multiplication of 1000 square Matrices
with Block Sizes 125 and 250.

� There is a cost associated with creating the queue and initializing it with
one entry to describe each piece of work. This initialization entails en-
queueing one entry per block of the output matrix, within a surrounding
action, and committing that action.

� Secondly, there is the cost incurred by the slave of binding to the queue
object and subsequently dequeuing an entry describing each piece of
work.

4 Related Work
There is growing interest in the use of workstations to perform parallel compu-
tations, as demonstrated by the increasing number of systems which support
such programming, such as: Munin [8], Linda [7], Mentat [14], PVM [22].

Mechanisms to support fault tolerance may be transparent to the application
programmer or explicit. Checkpointing schemes such as the globally consis-
tent mechanism of Orca, [15], and the optimistic scheme of Manetho, [11] are
examples of the former category. While these systems require operating sys-
tem level support, a scheme proposed for the widely used distributed parallel
programming environment PVM, [16] is portable. However, a global check-
pointing scheme is unlikely to take advantage of the structure of a bag of tasks
application, where there is an optimal point for checkpointing state, namely at
task completion. An alternative approach relying on primary backup process
replication is implemented in Paralex, [2]. However, Paralex is suited to data
flow type applications.

Pact, [17], defines a set of extensions to a sequential programming language
to enable implementation of fault-tolerant task based parallel programs. The
main program defines an execution graph where the nodes are atomic action
functions where entry constitutes beginning the action, and exit constitutes

15



ending the action. In widely used terminology of atomic actions, all actions
in Pact are top level actions. The edges in the graph are user defined event
dependencies, such that for instance one function is to be started on occurrence
of the termination event of another function. Actions share data defined in the
main program, subdivided into dataunits, through an implementation of DSM,
distributed shared memory. Locks, according to single writer multiple reader
policy, are acquired on dataunits as they are used within an action. At the same
time a required dataunit is migrated if necessary. An action’s termination event
is not triggered until modified dataunits have been written to a log. The run-
time system, described in [18], employs an Execution Manager to coordinate the
overall program execution among a number of Supervisors, each responsible
for management of a portion of the dataunits and a set of multithreaded server
processes. An action call may include a description of which dataunits are to be
used for optimal Supervisor selection, and the supervisor allocates the call to a
server process based on its accumulated resource usage information. Periodi-
cally, the Execution Manager forces global checkpoints which optimize restart
recovery and allow truncation of log records. The log is distributed and entries
are timestamped to allow global ordering in the necessity for restart. Recovery
from failure of a single server node is possible through the logged information,
though other failures appear to necessitate restart recovery, i.e. from the last
global checkpoint. While it is possible to express matrix multiplication in a bag
of tasks style in Pact, Pact does not currently provide support for programming
parallel computations which are distributed over a network.

The Distributed Resource Manager which has been implemented using ISIS,
[9], does provide support for execution of large scale computations in parallel
over a network of heterogeneous machines. The resource manager, i.e. master,
is replicated for availability and the causal group communications primitives of
ISIS are employed to ensure consistent message ordering for exchanges between
master and slaves, and master and user interface. The system is presented as
a fault tolerant distributed batch scheduling system. While it may be possible
to express a large scale matrix multiplication as repeated execution of a slave
program with different parameters, each task is run as a separate executable,
entailing a noticeable overhead in the associated fork(). Furthermore, the system
provides no explicit support for access to the large remote objects.

The bag of tasks structure is well suited to Linda, and an implementation
of Linda for a network of workstations is available. FT-Linda, [3] implements
additional primitives to support fault tolerance. The extensions include atomic
combinations of operations, the ability to define multiple tuple spaces, in-
cluding stable tuple spaces (through replication) and atomic transfer of tuples
between tuplespaces. In FT-Linda, each such replica is updated independently,
but a consistent multicast mechanism is used to ensure that identical update
requests arrive at each replica in an identical order. In the bag of tasks structure,
shared data is located in replicated tuple space. A slave atomically removes
a task and replaces it by an in progress tuple, such that a monitor process can
restore the appropriate work tuple in the event of a slave failing while pro-
cessing a tuple. As the slave processes a tuple, it writes results into a scratch
tuple space and, on completion of the work, atomically replaces the in progress
tuple by the contents of the scratch tuple space. MOM, [6] partitions tuples
into separate lists, including a busy list for work tuples which are being pro-
cessed and a children list for tuples generated by a worker which has yet to
call Done. The busy list is then similar to the scratch tuple space of FT-Linda,
and in both cases, there is an analogy to the use of nested atomic actions in the
work reported in this paper. Facilities for accessing very large objects are not
supported however. However, Plinda, [1], does propose access to persistent

16



tuple spaces and extensions to Linda aimed at supporting efficient access to
large data items. Performance measurements however are not published, so
that a comparative evaluation is not possible.

Experiments have been conducted in which the fault tolerance facilities pro-
vided by Argus were used to program a number of applications, [4] Argus is
a language and runtime system for programming reliable distributed applica-
tions and implements recovery units called guardians. A guardian runs on a
single node and contains data objects and handlers to operate on them, inter-
nally coordinating as necessary through mutex. Some of the data objects may be
stable and are backed up to stable, e.g. secondary, storage, so as to be recovered
after failure, while volatile objects are re-initialized. Similarly to Arjuna, Argus
implements a nested atomic action model to allow users to ensure distributed
consistency. For example, a simple implementation of parallel matrix multi-
plication is described where each slave is a guardian apportioned a part of the
output matrix to compute by a master guardian. Each slave checkpoints each
computed row to stable storage and maintaining an integer value determining
the next row to be computed. This structure is chosen to optimize performance
in a collection of homogeneous machines. However, the strategy prevents other
processes from taking over the work of a failed process and can thus degrade
performance in the event of a failure occurring. Another application considered
is travelling salesman problem which is less regular than matrix multiplication.
Here again the approach suggested is to partition the work statically between
slaves, with the master pre-computing the first couple of levels of the search
tree. Use of a resilient data type, as in [23], is suggested as a possible way of
making the master fault-tolerant, though issues of dynamic load balancing are
not addressed. The issues related to managing very large secondary storage
based data sets have not been addressed explicitly and no performance results
have been published, so that, as in the case of Plinda, a comparative evaluation
is not possible.

5 Concluding Remarks
Interest in exploiting the parallel processing power of a network of worksta-
tions to perform large scale computations is growing. Typically workstations
are allocated as single user machines, with storage resources sufficient only
for a single user. Obvious applications to consider first for execution in such a
network environment are ones which make relatively modest demands for stor-
age, or which can be partitioned into sufficiently small pieces. By contrast, the
experiment described here is an attempt to perform a computation which ma-
nipulates large amounts of data This work has considered the computation of
large scale matrix multiplication in a general purpose computing environment
consisting of a network of commonly used workstations.

A prototype of the application has been implemented using the services of
a class library for building fault tolerant distributed applications. Optionally,
a recoverable queue is employed to implement a fault tolerant bag of tasks
structure. The examples considered have been limited by available disk space,
but square matrices of width 3000 elements have been multiplied. In this case,
the size of each matrix is 72 Mbytes which exceeds available memory even
on the more powerful HP730 workstation, of which there is a much smaller
number at this establishment. Even for this example then, the computation
requires out-of-core techniques on these workstations. Experiment with the
prototype has yielded real though modest speedup.

For scalability, the computation is preferably block structured. The block

17



size identifies a compromise with regard to performance of the computation.
For a given matrix size, say � , the total amount of data accessed depends on
the block size. For a matrix partitioned into � 2 blocks of size � 2

0, the total data
transferred is the product of the number of block transfers and the size of a
block, i.e. � 2 � 2��� 1 
 � 2

0 or � 2 � 2��� 1 
 elements. Assuming the access cost itself
increases linearly with the block size, then the overal time for a single remote
slave to perform the computation decreases in inverse proportion to the block
size. Similarly, the maximum speedup increases in proportion to the block size.
The block size employed has been limited by available memory, but for the
range of block sizes considered, the experimental results appear to confirm this
result.

While the cost of reading a block from filesystem cache is certainly much
lower then the cost of reading from disk, the cache can provide little benefit
for large block size. Blocks of the ouput matrix are computed by block row, so
that a number of successive tasks, for the same block row of the output matrix,
read the same block row of the first input matrix. For the 3000 square matrix,
a block row is 18 Mbytes for 750 square blocks and 6 Mbytes for 250 square
blocks. It seems more likely that the latter will be held in cache, so that on this
basis it would be preferable to employ a smaller block size, but large enough
to make maximum use of cache space. However, as the overall matrix size is
increased, the size of block of which a row may be held in cache will decrease.
For the example referred to above, the analysis suggests that the faster time for
this computation should be obtained by using 750 square blocks rather than
250 square, even if all blocks are cached in the latter case, as shown in table 2.

The cost of provision for fault tolerance in failure free execution is found
to reduce as the block size is increased. Clearly, there is one entry added to
the queue for each block of the output matrix at startup and one queue access
for each block of the output matrix computed by a slave. This is confirmed
through experiment. Clearly also though, the cost incurred though recovery
following a failure increases as the block size increases. The normal execution
time is increased by the cost of one block execution in the event of failure and
immediate resumption. Since there are � 2 blocks, this overhead is 100 � � 2%. If
a slave in a parallel execution fails and does not resume, then the increase in
overall execution time depends on the exact point of failure, but the same value
as above may be regarded as a measure of the cost of recovery, separate to the
issue of changing the number of slaves.

Acknowledgements
The work reported here has been supported in part by grants from the UK Min-
istry of Defence, Engineering and Physical Sciences Research Council (Grant
Number GR/H81078) and ESPRIT project BROADCAST (Basic Research Project
Number 6360). The support of all the Arjuna team is gratefully acknowledged,
and in particular the assistance of M. Little, G. Parrington, and S. Wheater with
implementation issues particularly relevant to this work.

References
[1] Brian G. Anderson and Dennis Shasha. Persistent linda: Linda + transac-

tions + query processing. In Workshop On Research Directions In High-Level
Parallel Programming Languages, pages 129–141, Mont Saint-Michel, France,
June 1991.

18



[2] Ozalp Babaoglu, Lorenzo Alvisi, Alessandro Amoroso, Renzo Davoli, and
Luigi Alberto Giachini. Paralex: An environment for parallel program-
ming in distributed systems. Technical Report UB-LCS-91-01, Univerity
of Bologna, Laboratory for Computer Science, April 1991.

[3] David Edward Bakken. Supporting Fault-Tolerant Parallel Programming in
Linda. PhD thesis, Department of Computer Science, The University of
Arizona, Tucson, Arizona 85721, August 1994. Available as technical report
TR94-23.

[4] Henri E. Bal. Fault tolerant parallel programming in argus. Concurrency:
Practice and Experience, 4(1):37–55, February 1992.

[5] Philip A. Bernstein, Meichun Hsu, and Bruce Mann. Implementing recov-
erable requests using queues. ACM SIGMOD, pages 112–122, 1990.

[6] Scott R. Cannon and David Dunn. Adding fault-tolerant transaction pro-
cessing to linda. Software-Practice And Experience, 24(5):449–466, May 1994.

[7] Nicholas Carriero and David Gelernter. How To Write Parallel Programs: A
First Course. MIT Press, 1991. ISBN 0-262-03171-X.

[8] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation
and performance of Munin. In Proceedings of the 13th ACM Symposium on
Operating Systems Principles, Operating Systems Review, pages 152–164,
Pacific Grove CA (USA), October 1991.

[9] Timothy Clark and Kenneth P. Birman. Using the isis resource manager for
distributed, fault-tolerant computing. Technical Report 92-1289, Cornell
University Computer Science Department, June 1992.

[10] Craig C. Douglas, Timothy G. Mattson, and Martin H. Schultz. Par-
allel programming systems for workstation clusters. Technical Report
YALEU/DCS/TR-975, Yale University, Department Of Computer Science,
August 1993.

[11] Elmootazbellah N. Elnozahy and Willy Zwaenepoel. Manetho: Transpar-
ent rollback-recovery with low overhead, limited rollback and fast output.
IEEE Transactions on Computers, May 1992.

[12] Gene H. Golub and Charles F. Van Loan. Matrix Computations. John
Hopkins University Press, second edition, 1989. ISBN 0-8018-3772-3.

[13] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kauffman, 1993.

[14] Andrew S Grimshaw. Easy to use parallel processing with Mentat. IEEE
Computer, 26(5):39–51, May 1993.

[15] M. Frans Kaashoek, Raymond Michiels, Henri E. Bal, and Andrew S.
Tanenbaum. Transparent fault-tolerance in parallel orca programs. In Pro-
ceedings of the Symposium on Experiences with Distributed and Multiprocessor
Systems III, pages 297–312, Newport Beach, CA, March 1992.

[16] Juan Leon, Allan L. Fisher, and Peter Steenkiste. Fail-safe pvm: A portable
package for distributed programming with transparent recovery. Technical
Report CMU-CS-93-124, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, February 1993.

[17] Joachim Maier. Pact - a fault tolerant parallel programming environment.
In 1st International Workshop on Software for Multiprocessors and Supercom-
puters: Theory, Practice, Experience, St Petersburg, February 1993.

[18] Joachim Maier. Fault-tolerant parallel programming with atomic actions.
In 4th Workshop on Fault-Tolerant Parallel and Distributed Systems, College
Station, Texas, June 1994. IEEE, IEEE Computer Society Press.

[19] M.W. Mutka and M. Livny. The available capacity of a privately owned
workstationenvironment. Performance Evaluation, 12(4):269–284, July 1991.

19



[20] G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and M. C. Little. The
design and implementation of arjuna. Technical report, University of
Newcastle upon Tyne, Computing Laboratory, 1995.

[21] Santosh K. Shrivastava, Graeme N. Dixon, and Graham D. Parrington. Ob-
jects and actions in reliable distributed systems. IEEE Software Engineering
Journal, 2(5):160–168, September 1987.

[22] V.S. Sunderam. PVM: A framework for parallel distributed computing.
Concurrency: Practice and Experience, 2(4), Dec 1990.

[23] William Weihl and Barbara Liskov. Implementation of resilient, atomic
data types. ACM Transactions on Programming Languages and Systems,
7(2):244–269, April 1985.

20



Fault-Tolerant Execution of Computationally and
Storage Intensive Parallel Programs Over A Network

Of Workstations: A Case Study

J.A.Smith
S.K.Shrivastava

Broadcast Technical Report 103

The paper considers the issues affecting the speedup attainable for computations that
are demanding in both storage and computing requirements, e.g. several hundred

megabytes of data and hours of computation time. Specifically, the paper investigates
the performance of matrix multiplication. A fault-tolerant system for the bag of tasks

computation structure using atomic actions (equivalent here to atomic
transactions) to operate on persistent objects. Experimental results are described.
Analysis, backed up by the experimental results, shows how best to structure such

computations for obtaining reasonable speedups.

ISSN 1350-2042
Esprit Basic Research Project 6360

Broadcast Technical Report Series


