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1. Abstract

An important aspect of all successful programming languages is a good balance between general case performance and general-purpose language constructs. However, this focus on the general case results in many special case situations being ignored by the programming language and compilers communities. There exist many problems whose solutions become clumsy and unnecessarily complex if forced to fit the generic mold. In such situations it would be advantageous for the programmer to define extensions to their language or specific optimizations for their compiler that would tackle the problem at hand in a situation-specific way. 

In response to these difficulties two language/compiler-based solutions have been proposed: Template Meta-Programming and Meta-Object Programming. Both are techniques allow the programmer to enhance the compiler itself so that it can do a better job for their particular needs. Furthermore, developers are empowered to extend their language by improving the compiler to process new language constructs. In this paper we will compare two such technologies, as used in the C++ language: C++ Templates and the Open C++ extensible meta-object compiler.
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3. Introduction

The first great achievement in software engineering was the creation of the high-level general-purpose language. Since then programmers and their programs have benefited from this achievement in countless ways. At the same time programmers have paid a price for the convenience by being forced into a general-purpose framework that doesn’t always match their needs. Whether they needed particular language features or special compiler optimizations, programmers have traditionally had to pick their features of choice at the granularity level of a language as a whole.
On many occasions the inclusion of a new feature into a language has necessitated the creation of a brand new language, as old compilers would be incompatible with the new variant’s keywords and constructs. Furthermore, advances in compiler technology for the original language would be inaccessible to programs written in a language variant. This story is the same for many variants, including FX, Cilk and PolyJ. Great new features have had to wait years for their introduction. A similar story is played out on a smaller scale. On many occasions it would be so much easier for a programmer to add a few keywords to a language or a new operator, instead of taking up three times as much space to say the same thing. From specialized compilation techniques to new language features, programmers are frequently limited by their general-purpose languages.

Fortunately an answer exists: extensible compilers. A compiler is many things to many programs and thus must (1) strictly implement its general-purpose language and (2) be general enough to ensure that most programs are well optimized. This generality, however, has a price in terms of inconvenient limits on programmer and worse optimization behavior for many unusual but simple situations. A simple example is the use of C++ operator overloading for matrix arithmetic. Whereas normally matrix addition requires the programmer to write a loop nest for every addition, the overloading of the ‘+’ operator simplifies the code down to A+B+C, where A, B and C are matrix objects. However, the dark side of this simplicity is the implicit creation of temporary matrices for each use of the ‘+’ operator. If the matrices are large then the costs can be quite heavy. Fortunately, matrix addition of any number of matrices can be done with no temporary matrices at all by using a single loop nest. But this is what we were trying to avoid in the first place! The solution is to somehow add to the compiler an extra optimization pass that can convert A+B+C into the appropriate loop nest. For this we need compliers that can be extended by the programmer to perform such special-purpose tasks.

Extensible compilers come in two popular varieties: Template Meta-Programming and Meta-Object Programming. In the special case of C++ two particular implementations of these ideas stand out: the C++ Template specification and the OpenC++ Meta-Object compiler. C++ Templates are an enhanced preprocessor originally intended to be a form of limited static type polymorphism. However, due to the fact that it is practically Turing complete, Templates can be used to solve problems of arbitrary complexity. Enhanced by their tight integration into the base C++ language, Templates are a great choice for many applications. Conversely, the fact they were not originally designed to perform arbitrary code transformations, limits Templates in their applications. OpenC++ is a compiler that allows the programmer to insert code into the compiler itself that will transform a given program before it is fully compiled. This approach is very flexible and powerful but forces the programmer to work directly with a program’s abstract syntax tree. Furthermore OpenC++’s use of whole classes as its level of granularity leaves it too coarse a tool for some jobs.

Another important need filled by extensible compilers is that of compilers researchers. Because compilers research usually focuses on finding optimizing program transformations, researchers frequently need a testbed compiler on top of which they can build their optimizations. Creating such a compiler from scratch is usually out of the question due to the tremendous amount of work involved. Extensible compilers of both the Template Meta-Programming and Meta-Object Programming varieties offer the promise of providing a convenient testbed environment and thus alleviating many of these concerns.

The differences between the two flavors are significant and many situations lend themselves more strongly to one approach than the other. Templates are a tightly integrated feature of C++ that comes (in varying levels of implementation) with all C++ compilers. OpenC++ is a more powerful toolkit in that it allows programmers to directly extend the compiler but that power may make programming more complex. However, these two approaches are not mutually exclusive. Because OpenC++ can both interpret and produce C++ Templates, the two approaches can be used symbiotically, playing off of each other’s strength. This paper will evaluate the strengths and weaknesses of both approaches and highlight points where each excels.

4. Tools Overview

4.1. Templates

Fortunately or not, C++ is a rich in expressiveness language. Templates are just one example of how powerful it is. Their primary purpose is to provide a static, compile-time form of polymorphism, which helps programmers write more generic code easier. No wander that the STL (Standard Template Library) has had such success and is now part of the official ANSI/ISO C++ implementation.

The simplest use of templates is in writing generic functions in C++. Here is an example of a “max” function, that works on every type that supports the “>” operator, whether it is internally supported or overloaded by the programmer:

template <class T>

T &max (const T &a, const T &b)
{


return (a>b ? a : b);

}

One note that deserves to be made here is that this function is not compiled “as is”. The compiler automatically specializes it for the types that the programmer uses it on, effectively cloning it as many times as necessary.
The power of templates is not limited to functions. They can be used to describe and implement generic classes, and parameterize them not only on types but also on constants. Here is an example snippet of a generic Vector class:

template <class T, int N>

class Vector

{


T data[N];


...

}

Vector<double,3> point1;

One very important feature of templates, as we will see shortly, is specialization. Although the declared above Vector class can handle most types and sizes, we can implement special cases like bit Vector, or vector of 3 integers…

template <int N>

class Vector<bit,N> { ... }


class Vector<int,3> { ... }
Templates have also many other nice features like default template arguments (quite similar to default function arguments in C++), member templates and so on. One thing a programmer should be very careful about if she wants to make heavy use of templates in her programs is choosing the right compiler. Although all these features have been described in the ANSI/ISO C++ Language Standard Specification for quite a log time by now, not many compilers support them, and if some do, the support is not guaranteed to be thorough.

Even if all template features required are supported by the compiler in question, there is no guarantee that the quality of the produced code will be satisfactory, not to mention comparable to the corresponding hand-written template-free code.

Having said this, now we are going to introduce some template based techniques that reveal the real power of this programming paradigm. What follows is something designers of the language never though templates will be used for!

Imagine this simplest example:

template <int N>

class factorial

{


enum { V = N*Factorial<N-1>::v; }

};

class factorial<0>

{


enum { V = 1; }

}

...

int f10 = factorial<10>::V;

What it does is calculating factorials at compile time. Let’s walk briefly the code and examine why this happens. First we declare a generic “factorial” class that has only a single constant definition inside (enums are constants in C/C++). The value assigned to this constant is calculated through instantiation of the same class, but with dimension 1 lower. When the inherent recursion requires instantiation at level 0, the specialized factorial<0> class is used and the recursion stops.

Because the calculation involves just constants, and is not constructing instances of this class, to actual code is produced. Instead the computation is completed at compile time and the value is pasted inline in the generated code. This of course is if our compiler is smart enough to do it.

As you can imagine, this is not the limit. Once we have recursion, we can write any program that we want, and what’s more, we can make it run at compile time. Impressing, isn’t it? Here are just a few more examples:
· “if” statements: if (condition) statement1; else statement2;
template<bool C> class _name { };

class _name<true> {
class _name<false> {

public:
public:

    static inline void f() { 
    static inline void f() {
        statement1;
        statement1;

    }
    }
};
};
_name<condition>::f();
· “switch” statements:
becomes:
int i;

switch(i)

{

    case value1:

        statement1;

        break;

    case value2:

        statement2;

        break;

    default:

        default-statement;

        break;

}

template<int I>

class _name {

public:

    static inline void f() { 
        default-statement; 
    }

};

class _name<value1> {

public:

    static inline void f() { 

        statement1; 
    }

};
class _name<value2> {

public:

    static inline void f() { 
        statement2; 
    }

};

_name<I>::f();

· “do-while” loops: do statement; while (--i>0);
template<int I>

class _name {

private:

    enum { go = (I-1) != 0 };

public:

    static inline void f()

    {

         statement;

         _name<go ? (I-1) : 0>::f();

    }

};

class _name<0> {

public:

    static inline void f()

    { }

};

_name<N>::f();

Obviously this list can be long, but the noticeable code bloat and complexity is inherent. This is the price we have to pay using this approach to get high performance code. And last but not least, after we write the code, we hand it to the compiler and keep our fingers crossed that the resulting sequence of assembly instructions will be as optimized as we expect. It is not a secret that almost all compilers fail to inline all the code and propagate all constants, thus resulting in poorer performance than hand-written low-level source.
Though these were interesting template applications, the story does not end here. The real power of templates becomes evident. It is called “Expression Templates” and was invented in 1995 by Tood Veldhuizen.

The idea is simple. Suppose you have an expression of the kind x=a+b+c, where all a, b, c and x are vectors. If one overloads the + operator for vectors, like any knowledgeable C++ programmer would do, the result is awful from performance viewpoint. This is because the code becomes essentially equivalent to the following:

Vector x, a, b, c;

Vector t1 = a+b;

Vector t2 = t1+c;

x = t2
And this is because overloading operators you are actually defining functions that implement these operators. Of course we want something that is as fast as a single loop performing the addition, like:

for (int i = 0; i < a.size(); i++)

{

x[i] = a[i] + b[i] + c[i];

},
but as readable as x=a+b+c. How can we achieve this? Answer: Expression templates.

Here the things are deeper than expected. We still need to overload the operators we want to handle, but instead of doing the actual computation inside the operator function body, we just construct a class type and an unique element of that type, which represents the operation. Here is how this is done:

· First we need some generic classes to represent nodes in the expression tree that is build in the type in question:

class OAdd {


OAdd () {}


static inline double apply(double x, double y) { return x+y}

};

template <class T>

class Uexp {


T t; ...

}

template <class L, class R> 
class Bexp {


L l;


R r;


...

}

· Then we overload the + operator in the following simple way:
Uexp<Bexp<Vector,Vector>> operator + (const Vector &v1, const Vector &v2)

{


typedef Bexp<Vector,Vector> Exp;


return Uexp<Exp>(Exp(v1.begin(),v2.begin()));

}

template <class X>

Uexp<Bexp<Uexp<X>,Vector>> operator + (const X &x, const Vector &v)

{


typedef Bexp<Uexp<X>,Vector> Exp;


return Uexp<Exp>(Exp(x,v.begin()));

}

Note that we need to overload two more version of the + operator to achieve full coverage of all possible cases in which it can be used, namely “operator + (Vector, X)” and “operator + (X, X)”.
· Last we need to write functions in declarative way which are able to decompose the formed expression tree in an efficient manner. Here is a generic signature:
template<class T>

void function (const Uexp<T> &t)

{


...

}

Expression templates of two flavors were used to build an Omega Library interface (section 5.1.) and a High Performance Matrix library (section 7.). Please consult these section and the appropriate appendices for more details.
4.2. OpenC++
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Template OpenC++ Standard

Created by Shigeru Chiba of the University of Tsukuba, OpenC++ is an extensible C++ compiler based on the Meta-Object Programming principle. It allows the programmer to extend the compiler by defining metaclasses, which take charge of translating the code inside and the uses of regular classes in a given program and can be associated with any number of such regular classes. A metaclass is itself a C++ class whose code is run in a preprocessor pass, producing C++ code that is then sent to a standard C++ compiler for final compilation. Thus OpenC++ makes it possible to (1) create extensions to the C++ language and (2) to design simple interfaces to complex APIs so that the simple code can be expanded by OpenC++ extensions into its fully detailed version.


The figure above describes the structural organization of the OpenC++ compiler. A metaclass that extends OpenC++ is placed into a .mc file and fed into OpenC++, which then compiles the extension (written in C++) and creates a dynamically loadable module. Then both the module and a base-level C++ program are fed into OpenC++ where the C++ program is parsed and transformed by the metaclasses invoked in the base-level program. The resulting transformed program is then fed into a normal C++ compiler, which turns it into executable or object code.

A simple example of an OpenC++-enabled transformation is the use of verbose objects. We can create a VerboseClass metaclass and associate it with a number of normal classes in the base-level program. The metaclass replaces each call of one of a corresponding class’ methods with that same call, plus a line printing out the fact that this call was made. For example, if class Person has been associated with the VerboseClass metaclass, and variable craig  is of type Person, the line:
craig.Age();

would be transformed into:
(puts(“Age()”); craig.Age());

The resulting program is then automatically fed into a C++ compiler, which generates the desired code.

More complicated transformations are possible. Though, OpenC++ interface does not allow metaclasses free reign over a user’s program, it allows a metaclass to process any of an associated class’ internal functions and almost any uses of instances of the class. In the VerboseClass example, we transformed every function call. However, much more is possible. We can transform every application of an operation to a class instance, assignments to class instances, use of the new and delete operators, etc. Additionally, we can define new language keywords. For example, in order to associate a class with a metaclass, one would normally have to write:
metaclass VerboseClass Person;

class Person {};

However, we can define the verbose keyword, so that in order to make the above association we could just say:

verbose class Person { };

Furthermore, OpenC++ allows us to add new keywords that act like class access specifiers (such as public: or private:) or member modifiers (such as inlined) and use them to tag class functions and arguments so that a metaclass can then test for the existence of such tags and modify its transformations accordingly. Thus the following code can be given meaning by some OpenC++ extension:
class SparseMatrix {

remoteProcedureCall:

synchronized void multiply(compressedRowStorage SparseMatrix mtx2); 
}
Another useful capability afforded by OpenC++ is the creation of new block structures. Specifically, OpenC++ programmers can use structures that look like for or while loops or like closures (anonymous functions) inside their code, even though such constructs do not exist in C++. Such extensions make programming easier and OpenC++ metaclasses can then translate them into their standard C++ counterparts. For a more concrete example, let us examine the possibility of extending a Matrix class with a forall construct that would allow the user to create expressions dealing individually with every element in the matrix.
Matrix m;

...
m.forall(e) { e = 0.0; }
The above code sets every element in the matrix to 0 using a forall construct that  is based on the while loop template. A for loop-based block would look like this:
m.iterateRows(row=2; row<6; row++) { row = 5*row; }

The above code multiplies rows 2 thru 6 by 5. A closure-based block would look like this:
Vector v;

v.applyFunc(double curElement) { curElement += 2 };

This code adds 2 to every element in the vector and works essentially as a callback function that is applied to each element.

Despite the many things that OpenC++ makes possible, it does have some notable drawbacks. Most significantly, it only allows us to transform classes and their uses. We do not have free access to the whole of a program’s source code, making the transformation of free-floating functions and interprocedural analysis difficult. Another problem is that a given class can only have one metaclass, making it impossible to apply compiler enhancements from different vendors to the same class. This problem is compounded by the fact that a given run of the enhanced compiler cannot produce code targeted for OpenC++. In other words, OpenC++ cannot make multiple iterative passes over the source code until we get pure C++ code, which makes it impossible to let different compiler enhancements to runs in series, one after the other.

Another important problem with OpenC++ is that the metaclass programmer must work directly with the base-level program’s abstract syntax tree. On the one hand, this is a good thing because it affords the programmer a great deal of control over the details of the transformation. The downside is that this may make it too difficult to write complex OpenC++ extensions for people other than compilers researchers for whom OpenC++ is easier than other more powerful and complex alternatives like SUIF. On the other hand, the complexity of writing an OpenC++ program seems to vary directly with the complexity of the task, so it is doubtful that Templates will scale better for very complex tasks. At the same time, simple program transformation tasks do not require the finesse offered by OpenC++ and thus may be performed largely thru the use of Templates.

The final judges of the relative complexity of OpenC++ programming must be the developers for only after weeks or months of dedicated use and thru intimate knowledge of one’s development environment can one truly know how easy or difficult it is to use. However, we can say this for certain: though limited in the ways it associates classes and metaclasses, OpenC++ is a flexible and powerful tool for custom program transformations. It is easy enough to use that one can produce non-trivial programs early on in the learning cycle, and thus does not pose a barrier to new adopters. Because it does not contain a C++ compiler of its own, OpenC++ can be attached to any commercial compiler and is thus well suited for the tasks of special-purpose optimizations and C++ language extensions, while still being able to use the large base of available commercial compilers. However, we believe that OpenC++’s inability to use multiple metaclasses with the same class makes the current version unsuitable for large-scale adoption. Nevertheless, OpenC++ explores a useful an interesting approach to extensible compilers that offers a great deal of promise for the future versions.
5. Case Study: Omega

5.1. Templates

The purpose of this case study is:

· To demonstrate the power of Template Meta-programming through Templates (especially Expression Templates) and Meta-object Programming (Open C++).

· To compare the two approaches in complexity of implementation and usability.

The primary aim of developing the Omega Library interface is the ability to write C++ programs that take look like:

void main ()

{


Var i1 = "i1", j1 = "j1", k1 = "k1", i2 = "i2", j2 = "j2", k2 = "k2";


Relation s = Rel(



(i1,j1,k1),(i2,j2,k2),



i1<i2 || i1==i2 && (j1<j2 || j1==j2 && k1<=k2));


s.print();

}

And perform the same function as the native Omega interface, which for the above code is:

void main ()

{


char *_1[3] = {"i1", "j1", "k1"};


char *_2[3] = {"i2", "j2", "k2"};


Variable_ID id1[3];


Variable_ID id2[3];


Variable_ID &i1=id1[0], &j1=id1[1], &k1=id1[2];


Variable_ID &i2=id2[0], &j2=id2[1], &k2=id2[2];


Relation s(3,3);


for (int i=0; i<3; i++)


{



s.name_input_var(i+1,_1[i]);



s.name_output_var(i+1,_2[i]);



id1[i]=s.input_var(i+1);



id2[i]=s.output_var(i+1);


}


F_And *a1 = s.add_and();


F_Or *o1 = a1->add_or();


F_And *a2 = o1->add_and();


GEQ_Handle h1 = a2->add_GEQ();


h1.update_coef(i1,1);


h1.update_coef(i2,-1);


h1.negate();


F_And *a3 = o1->add_and();


EQ_Handle h2 = a3->add_EQ();


h2.update_coef(i1,1);


h2.update_coef(i2,-1);


F_Or *o2 = a3->add_or();


F_And *a4 = o2->add_and();


GEQ_Handle h3 = a4->add_GEQ();


h3.update_coef(j1,1);


h3.update_coef(j2,-1);


h3.negate();


F_And *a5 = o2->add_and();


EQ_Handle h4 = a5->add_EQ();


h4.update_coef(j1,1);


h4.update_coef(j2,-1);


GEQ_Handle h5 = a5->add_GEQ();


h5.update_coef(k1,-1);


h5.update_coef(k2,1);


s.print();

}
Further, we want the produced code to be no worse by means of size and performance.

In order to achieve this Expression Templates were exploited to full extent. The result is a high-performance code without sacrificing any readability and maintainability. A brief overview of the classes involved follows:
· Var – represents an Omega variable, whether it is a symbolic or bound one. Easily converts to VarList (a singleton list) or Mul (a multiplication node, essentially 1*Var in the expression tree);
· Int – represents an integer constant that can be used in a multiplication with a variable to produce a Mul type and a corresponding instance object.
· Mul – represents a multiplication of an Int and Var in an expression. Has fields to hold copies of both operands;

· Add<T> – generic class that represents an addition in a constraint expression. The left operand is another expression, the right one is a Mul;
· Equ<L,R> – generic class that represents an equation between to expressions, forming a constraint;

· Log<L,R> – generic class that represents a logical operation over two other formulas, potentially equations;

· Not<T> – generic class to represent the logical negation of a formula;
All these classes are used by a set of overloaded operators *, +, !, ==, >, <, >=, <=, !=, && and || to build expression trees in form of types that are then parsed by the “build” function, which efficiently reconstructs a relation’s body.

One example type, produced by the overloaded operators, acting on the classes mentioned above is:

Log<
// ||
Equ<Var,Var>,
// i1<i2
Log<
// &&
Equ<Var,Var>,
// i1==i2
Log<
// ||
Equ<Var,Var>,
// j1<j2
Log<
// &&
Equ<Var,Var>,
// j1==j2
Equ<Var,Var>>>>>
// k1<=k2
This is very close to the type produced in the first relation example, but the actual type is a bit more complicated, as the Omega Library does not provide means of expressing “<”, thus we need to model it with negations and “>=”.
When the whole expression type has been built and the corresponding object instances are created inside one another, a massively overloaded function called “build” is called to form the eventual relation body. Although it might seem recursive because of fragments like:

template <class T>

inline void build (Constraint_Handle h, const Add<T> &a, const int s)

{


build(h,a.t,s);


build(h,a.m,s);

}
it is not, as the “self” invocations inside the body are for different instantiations. Actually this function is instantiated for each node of the expression tree and it is called only once for that specific node. Presuming that the compiler does its job carefully, no calls are ever made. Everything is expanded inline and the relation body is created as one big block of straight code (no branching), similar to the block of C code, corresponding to the Omega Library native interface, showed at the beginning of this section.

Because this Expression Template code was developed before we got acquainted with the theory behind, presented in the literature, it has both advantageous parts and omissions. An advantage is that never ever are objects with virtual function created and then the functions called. This improves performance a lot. One omission is that the equation type was coded as a class data field of a specified enum type, rather than a special template class argument, like OAdd in the matrix example (Section 7.) This confuses most compilers and prevents them from generating the proper code.
Full source code can be found in the appendix.
5.2. OpenC++

The approach taken by an OpenC++ program in interpreting an Omega expression is markedly different from that of a Template-based program. A Template-based program uses a declarative style of programming to first put together a large type expression to describe the Omega relation and then uses pattern matching to translate the type expression into transformed code. On the other hand, an OpenC++ metaclass charged with interpreting an Omega expression is a purely imperative program that recursively walks the Omega expression’s abstract syntax tree, putting together the transformed code along the way. We can get a deeper look into how the OpenC++ version of the Omega interpreter does its work by looking at the code that it interprets.
OmegaVar i("i"), j("j"), k("k"), l("l"), m("m"), n("n");

omega.relation((i,j,k)-(l,m,n))

 {

   (i<j && (k>j));

   (n<m || (i>=n && j==m));

   m==k+j;

 };
The above code is an example of the kinds of Omega expressions that the OpenC++ version can interpret. The expression as a whole is structured as a while loop, except that the while keyword is replaced by omega.relation. Inside the relation block’s ( ) we place the variables in terms of which we wish to see the solution. If we want to see dependences we use “(i,j,k)-(l,m,n)”, and we use “(i,j,k)” if we only want to see the solutions to the linear inequalities. Note that all the variables used in creating an Omega relation must be instances of the OmegaVar class. Inside the { } is where the programmer places the body of the relation. Each line defines the inequalities between some variables and separate lines are &&-ed together. Note the use of == rather than = to denote equality. This syntax was chosen because it is a closer match to C++’s own syntax for comparison expressions.
Internally, our OpenC++ metaclass has two jobs: (1) transform the omega.relation block and (2) transform each individual use of  an arithmetic or comparison operation into an equivalent Omega expression. Both jobs are performed by the same metaclass: OmegaEntityClass. OmegaEntityClass is the metaclass for two base classes: OmegaVar, which every omega variable is an instance of and Omega, which the omega object is an instance of. Whenever OpenC++ encounters an omega.relation block, it calls the TranslateUserStatement() method of OmegaEntityClass to translate this block. TranslateUserStatement() pulls out the variables inside the ( ) and allows OpenC++ to translate the expressions in each line of the body of the relation on its own. To translate an arithmetic or comparison expression involving an OmegaVar instance, OpenC++ calls the TranslateBinary() method of OmegaEntityClass which converts these expressions into a format that Omega can understand. When OpenC++ is done parsing, the final result is an expression that corresponds to the given relation but this time, in a format that Omega can easily deal with.

As you can see, working with OpenC++ is quite different from performing the transformations with templates. Our metaclass needs to provide methods that translate specific kinds of uses of the instances of our classes. In this case we need to translate the relation block as well as binary operations applied to instances of OmegaVar. The actual process of translation involves the traversal of the abstract syntax trees created by OpenC++, accompanied by the generation of transformed target code. The complexity of the resulting OpenC++ code is somewhat higher than that of equivalent C++ Template code. While the Template code is a complex organization of simple pieces, the OpenC++ code is of equivalent complexity level but is not easily divisible into simple pieces. However, a programmer experienced with OpenC++ would not need the simplification offered by dividing the program into simple pieces and so it seems that more experienced OpenC++ programmers would find the complexity of two approaches equivalent.

6. Case Study: Loop unrolling

Whereas in the case of Omega we had a reasonable choice regarding whether to implement the desired code transformations using Templates or OpenC++, when it comes to loop transformations such as loop unrolling Templates are no longer an option. The reason is simple: Templates were never designed as a general purpose code transformation tool. Instead, they were created as a means for implementing a form of static generic programming. As such, the Template syntax is ill-suited for transformations involving whole program blocks. For example, in order to unroll the this simple loop:
int i = N;
do 
 {
   statement;
 } 
while (--i > 0);
we need to rewrite it as follows:
template<int I> 
class _name {
   private: 
   enum { go = (I-1) != 0 }; 
   public: 
   static inline void f() {    
      statement;
      _name<go ? (I-1) : 0>::f(); 
   }
};
class _name<0> 
{
   public: 
   static inline void f() { } 
};
_name<N>::f();
Clearly, this is too heavy a burden to place on a programmer. On the other hand, OpenC++ can do its work with very few changes in the user’s program, allowing us to define a much broader range of program transformations. In this section we will describe the OpenC++ implementation of one such transformation: loop unrolling.
From the user’s point of view, the amount of work they have to do to turn a regular for loop into an unrolled for loop is minimal. They simply need to replace their for with unroller.ufor. Everything else remains the same. For example, the code:
int a=6;

unroller.ufor(int i=2; i<8 || i>=12; i+=2)

 {

   a=a+i;

 }
will be unrolled into this code:
int a=6;
 { 
   int i = 2; 
   a = a + i; 
   i += 2;
   a = a + i; 
   i += 2;
   a = a + i; 
   i += 2;
 }

In order to implement loop unrolling in OpenC++ we need to do three things. (1) determine the initial value of the iterator variable, (2) calculate the range of iterator values where the loop is not terminated and (3) discover the iterator step size. We implement this functionality in the UnrollerClass metaclass. The unroller object is an instance of a class LoopUnroller, whose metaclass is UnrollerClass. Thus, our metaclass is given charge of translating ufor blocks thru its TranslateUserStatement() method. 

Because TranslateUserStatement() is given the abstract syntax tree for the ufor loop, its job is clear. It interprets the three sections of the ufor loop, ensuring that the initial value, the test and the step size are all constant. If they are, it calculates their values and ranges and stores them. When all the relevant information about the loop is collected, InlinerClass simulates the loop given the freshly computed constant values and ranges to see if it terminates in less than 50 iterations. If so, UnrollerClass outputs the loop body, followed by the step expression once for every iteration discovered. If  the loop doesn’t terminate in a reasonable number of iterations, UnrollerClass turns ufor into a regular for loop so that it can be compiled by a regular C++ compiler as it sees fit. The total amount of code for this task is ??? lines. 

Overall, the complexity of the OpenC++ implementation of loop unrolling seems to be in proportion to the complexity of the task. Because loop unrolling requires us to interpret the arithmetic and logical expressions and to do some simulation of the loop’s runtime behavior, this task is notably more complex than the transformation of Omega relations. Nevertheless, the task  is quite manageable and would take a programmer no more than two or three days to write. Extensions of the basic code to include constant propagation would take considerably longer as OpenC++ does not provide us with a dataflow block diagram abstraction layer on top of the abstract syntax tree representation. Because of the difficulties that Templates face with program transformations at the block level, Open++ is really the only viable tool for the job. More than that, in the case of loop unrolling OpenC++ shows itself to be a good match for the job, with the complexity of the code matching the complexity of the task.

7. Performance Analysis: Matrix Expressions

This section emphasizes on comparing Template Meta-programming and Meta-object Programming (OpenC++ flavor) in terms of performance of generated code. First a generic matrix library is described, which has been implemented in:

· Traditional C++ with operator overloading and no fancy transformations;

· Template Expressions version, closely following the original paper on the subject, making just a few performance enchancements;

· OpenC++ version, which closely follows an example of the OpenC++ distribution.

All implementations are thoroughly tested and the results are presented and analyzed. All sources are available in the appendix of this document.
7.1. Performance Testing Suite: Matrix Library

In order to test performance in consistent, fair manner, a fairly simple special purpose Matrix Library was implemented. Operations supported are:
· m1+m2
· m1-m2
· c*m
· m(c
where are mi are matrices and c is a scalar value.

The first approach was to implement this as a matrix class with operations provided by overloaded operators in the normal C++ manner. This as one can imagine is a way of getting awful performance for reasons stated before… But is a good starting point and appropriate comparison level.

Secondly, the library was implemented using Expression Template techniques. Although written from scratch, implementation followed quite closely the original paper in the field, while tuning some performance related bottlenecks, such as virtual functions and machine parameters. This was possible because compiler support for templates is much better these days than it was in 1995, when the main results in this field were shown.
Finally an OpenC++ vector inliner example has been used as a template to write another implementation of the matrix library in question. This resulted in a compiler independent way to improve matrix expression code, provided that the programmer is willing to pass through another level of compilation.
The last two approaches enabled achieving results, in some cases an order of magnitude better than the standard implementation.
7.2. Performance Setting

The tests were executed by computing a number of matrix additions with between 1 and 6 terms. Then the same setting was repeated but along with scaling each term with a scalar value.

All experiments were taken under Microsoft Windows 2000 operating system on a Pentium II Celeron 464 MHz, 256 MB RAM, 16 KB L1 cache, 128 KB L2 cache, both 4-way set-associative. All processes were executed in exclusive priority mode.

Two different compilers were used: Microsoft Visual C++ 6.0 SP5 and Intel C++ Compiler 5.0. Common optimization options used were:

· O2

· G6

· Oi

· Ob2
These regulate code generation for Intel P6 family of processors (of which Pentium II is a member) with maximum optimizations for speed and inlining of user-level functions.
The Intel C++ compiler allows much more precise control over the generated code and has considerably more aggressive optimization routines. Additional options used were:

· QxiM – generate MMX extended instruction-set code

· Qunroll1024 – unroll all loops with less than 1024 statements inside

· Qwp_ipo – most aggressive inter-procedural optimization

· Qoption,c,-ip_inline_min_stats=10240 – inline all user-level functions with less than 10240 statements inside
An interesting thing to point out is that for some complex matrix expressions (of 9 and more terms) the Intel compiler (given these options) failed to compile the test program in reasonable amount of time. This might be a hint that there is an exponential complexity optimization algorithm inside the code Intel generation engine.

7.3. Results

Above is the overall result of all experiments. The horizontal axis represents the different combinations of compilers and implementations. The vertical axis represents the time in seconds needed to complete the test. In depth we can see the different number of terms in the matrix expression evaluated.

First thing to point out is that using the standard implementation, results are pretty bad, no matter which compiler we are using. This is connected with the many temporary matrices created during the expression evaluation. Never the less, the degradation is still linear.
Using Template Expressions has a lot more to benefit from the compiler. Microsoft Visual C++ produces poor code, as it is not able to inline all functions and to perform all constant propagations possible. Still, even with that in mind, performance is much better that using the dummy standard implementation. With Intel compiler, results are very close to the OpenC++ produced code. Why they are not the same will become evident later.
Using OpenC++, again has no difference which back-end compiler we choose. This is obviously because all the code transformations required are applied before the actual program is fed into the code generator.

Above is a more detailed view inside the differences between Expression Templates and OpenC++. First two series are without scaling, last two are with scaling included. Horizontally we change the number of terms. Vertically, again, we have the execution time in seconds.

The case of one term is not interesting at all, as there are no expressions involved. This is a bare assignment and is handled similarly in all cases. In the case of two terms, Template Expressions have higher general overhead incrementing the vector positions in the generated loop, so performance again suffers in comparison to the OpenC++ version. Cases for 3 and 4 terms with scaling involved templates get really close, and arguably this is the right place to compare with the Meta-object programming approach. If we had high-enough quality compilers this will have propagated to all values grater than 3. Unfortunately generic types generated as part of the expression parse tree become more and more complex and even in cases of 5 and 6 terms the compiler is not able to inline all functions and perform all necessary optimizations. So we get bigger performance penalty. Not to mention that for cases of 9 and more terms, compilation does not complete in a reasonable amount of time.

Let’s look into percentage differences in more detail:
Above is a table, showing relative percentage differences from Microsoft Visual C++ with the standard implementation – probably the common approach among C++ programmers (first 6 lines), Intel C++ compiler using expression templates (next 6 lines) and Intel C++ compiler using Open C++.
It is evident that using the standard approach we get between 300% and 450% performance penalty from the best possible case. In some “good” cases Expression Templates are really close to the OpenC++ version (an average difference of 5%-6%), but there is overhead when the number of terms is small and another series of performance degradation when number of terms is large.
7.4. Conclusion

As a conclusion to these performance analyses, we can say that using advanced compiler techniques is essential to produce high-performance code for scientific applications. 
Template Meta-programming in the form of Expression Templates is a powerful mechanism, standard part of the C++ language, but compilers are still not powerful enough to exploit it to full extent. Thus we get undesirable scalability problems and support issues. Never the less, this might be an alternative direction to go in the near future, as compilers become more standard compliant and better optimizing.
For now Meta-object programming produces best results, because it is compiler independent and the programmer has full control over the produced code. Another issue is how much it is acceptable by developers to accept the additional layer in their compilation cycle and to learn the new object model that allows them to write code transformations.
In terms of coding complexity, there is no single opinion. Depending on their background, some might prefer Expression Templates over OpenC++, while others might go the other way around. Considering the code for the matrix library developed as part of this experiment, number of lines is about the same (160) while size in terms of characters is in favor of Templates (3797 vs. 4708).
8. Conclusion

In this report we presented two approaches of doing code transformations and advising the C++ compiler of how to proceed: Template Meta-programming (primarily through Expression Templates) and Meta-object Programming (OpenC++ flavor) with their strengths and weaknesses.
Both technologies deserve attention and produce better code than standard C++. Performance is gained without sacrificing readability, but has a hidden complexity cost behind the scenes. 
An interesting point is that neither approach was initially designed for means of performance computing. Both were viewed as expressiveness extensions that introduce better code readability.
At this point OpenC++ provides better scalability and flexibility for performing code transformation optimizations. Also, it is an open environment and we can expect more and more from it, provided that sufficient interest and motivation is in place.

Templates are good because they are a standard language feature and we don’t need external tools to manage them. We only need to know the subtle points in the underling programming language. They provide powerful mechanism for improving performance of C++ code in a portable way. Still templates require strictly standard compiler with powerful optimization engine.
As a conclusion these are two different ways to go and there is no “better” one. Each of them has its strengths and weaknesses. Which one is more suitable depends on the task and the platform, which it is supposed to execute on. Further as approaches they are not mutually exclusive and can be used symbiotically to produce even better results.
9. Appendix

9.1. Omega Library Interface

9.1.1. Omega++.cpp: Expression Templates
#include <stdio.h>

#include <omega.h>

#include <list>

using namespace std;

inline void debug (const char *t)

{

//
printf("***DEBUG: %s\n",t);

}

//----------------------------------------------------------

class Var;

typedef list<Var> VarList;

class Mul;

class Var

{

public:


const char *name;


Variable_ID *id;


bool master;


bool free;


Var (const char *_name, bool _free = false): name(_name), free(_free), master(true)


{



id=new Variable_ID;



debug("Var(const char *, bool)");


}


Var (const Var &v): name(v.name), free(v.free), id(v.id), master(false)


{



debug("Var(const Var &)");


}


operator Mul ();


operator VarList ();


~Var ()


{



if (master)




delete id;



debug("~Var()\n");


}

};

//----------------------------------------------------------

class Int

{

public:


const int i;


Int (const int _i): i(_i)


{



debug("Int(int)");


}


Int (const Int &_): i(_.i)


{



debug("Int(const Int &)");


}


operator Mul ();


~Int ()


{



debug("~Int()\n");


}

};

//----------------------------------------------------------

class Mul

{

public:


const Int i;


const Var v;


Mul (const Int &_i, const Var &_v): i(_i), v(_v)


{



debug("Mul(const Int &, const Var &)");


}


Mul (const Mul &m): i(m.i), v(m.v)


{



debug("Mul(const Mul &)");


}


~Mul ()


{



debug("~Mul()\n");


}

};

//----------------------------------------------------------

template <class T>

class Add

{

public:


const T t;


const Mul m;


Add (const T &_t, const Mul &_m): t(_t), m(_m)


{



debug("Add(const T &, const Mul &)");


}


Add (const Add &a): t(a.t), m(a.m)


{



debug("Add(const Add &)");


}


~Add ()


{



debug("~Add()\n");


}

};

//----------------------------------------------------------

template <class L, class R>

class Equ

{

public:


enum Op


{



_geq,



_eq


};


const L l;


const R r;


Op o;


Equ (const L &_l, const R &_r, Op _o = _geq): l(_l), r(_r), o(_o)


{



debug("Equ(const L &, const R &, Op)");


}


Equ (const Equ &e): l(e.l), r(e.r), o(e.o)


{



debug("Equ(const Equ &)");


}


~Equ ()


{



debug("~Equ()\n");


}

};

//----------------------------------------------------------

template <class L, class R>

class Log

{

public:


enum Op


{



_and,



_or


};


const L l;


const R r;


Op o;


Log (const L &_l, const R &_r, Op _o = _and): l(_l), r(_r), o(_o)


{



debug("Log(const L &, const R &, Op)");


}


Log (const Log &l): l(l.l), r(l.r), o(l.o)


{



debug("Log(const Log &)");


}


~Log ()


{



debug("~Log()");


}

};

//----------------------------------------------------------

template <class T>

class Not

{

public:


const T t;


Not (const T &_t): t(_t)


{



debug("Not(const T &)");


}


Not (const Not &n): t(n.t)


{



debug("Not(const Not &)");


}


~Not ()


{



debug("~Not()");


}

};

//----------------------------------------------------------

inline Int::operator Mul ()

{


debug("Int-->Mul");


return Mul(*this,Var(NULL));

}

inline Var::operator Mul ()

{


debug("Var-->Mul");


return Mul(Int(1),*this);

}

inline Var::operator VarList ()

{


VarList l;


l.push_back(*this);


return l;

}

//----------------------------------------------------------

inline VarList operator , (const Var &v1, const Var &v2)

{


VarList l;


l.push_back(v1);


l.push_back(v2);


return l;

}

inline VarList &operator , (VarList &l, const Var &v)

{


l.push_back(v);


return l;

}

//----------------------------------------------------------

inline Mul operator * (const Int &i, const Var &v)

{


Mul m(i,v);


return m;

}

inline Add<Mul> operator + (const Mul &m1, const Mul &m2)

{


return Add<Mul>(m1,m2);

}

template <class A>

inline Add<A> operator + (const A &a, const Mul &m)

{


return Add<A>(a,m);

}

template <class L, class R>

inline Log<L,R> operator && (const L &l, const R &r)

{


return Log<L,R>(l,r);

}

template <class L, class R>

inline Log<L,R> operator || (const L &l, const R &r)

{


return Log<L,R>(l,r,Log<L,R>::_or);

}

template <class T>

inline Not<T> operator ! (const T &t)

{


return Not<T>(t);

}

template <class L, class R>

inline Equ<L,R> operator >= (const L &l, const R &r)

{


return Equ<L,R>(l,r);

}

template <class L, class R>

inline Equ<R,L> operator <= (const L &l, const R &r)

{


return r>=l;

}

template <class L, class R>

inline Not<Equ<L,R> > operator < (const L &l, const R &r)

{


return !(l>=r);

}

template <class L, class R>

inline Not<Equ<R,L> > operator > (const L &l, const R &r)

{


return r<l;

}

template <class L, class R>

inline Equ<L,R> operator == (const L &l, const R &r)

{


return Equ<L,R>(l,r,Equ<L,R>::_eq);

}

template <class L, class R>

inline Not<Equ<L,R> > operator != (const L &l, const R &r)

{


return Not<Equ<L,R> >(Equ<L,R>(l,r,Equ<L,R>::_eq));

}

//----------------------------------------------------------

inline void print (const Int &i)

{


if (i.i<0)



printf("(%d)",i.i);


else



printf("%d",i.i);

}

inline void print (const Var &v)

{


printf("%s",v.name);

}

inline void print (const Mul &m)

{


print(m.i);


if (m.v.name!=NULL)


{



printf("*");



print(m.v);


}

}

template <class A>

inline void print (const Add<A> &a)

{


print(a.t);


printf("+");


print(a.m);

}

template <class L, class R>

inline void print (const Equ<L,R> &e)

{


print(e.l);


switch (e.o)


{


case Equ<L,R>::_geq:



printf(">=");



break;


case Equ<L,R>::_eq:



printf("==");



break;


}


print(e.r);

}

template <class T>

inline void print (const Not<T> &n)

{


printf("!(");


print(n.t);


printf(")");

}

//----------------------------------------------------------

inline void build (Constraint_Handle h, const Int &i, const int s)

{


h.update_const(i.i*s);

}

inline void build (Constraint_Handle h, const Var &v, const int s)

{


h.update_coef(*v.id,s);

}

inline void build (Constraint_Handle h, const Mul &m, const int s)

{


if (m.v.name==NULL)



h.update_const(m.i.i*s);


else



h.update_coef(*m.v.id,m.i.i*s);

}

template <class T>

inline void build (Constraint_Handle h, const Add<T> &a, const int s)

{


build(h,a.t,s);


build(h,a.m,s);

}

template <class L, class R>

inline void build (F_And *f, const Equ<L,R> &e, bool negate = false)

{


if (negate)



f=f->add_not()->add_and();


Constraint_Handle h;


switch (e.o)


{


case Equ<L,R>::_geq:



h=f->add_GEQ();



break;


case Equ<L,R>::_eq:



h=f->add_EQ();



break;


}


build(h,e.l,1);


build(h,e.r,-1);

}

template <class L, class R>

inline void build (F_And *f, const Not<Equ<L,R> > &n)

{


build(f,n.t,true);

}

template <class L, class R>

inline void build (F_And *f, const Log<L,R> &l)

{


switch (l.o)


{


case Log<L,R>::_and:



build(f,l.l);



build(f,l.r);



break;


case Log<L,R>::_or:



{




F_Or *o = f->add_or();




build(o->add_and(),l.l);




build(o->add_and(),l.r);



}



break;


}

}

//----------------------------------------------------------

template <class E>

Relation Set (const VarList &l, const E &e)

{


Relation r(l.size());


int c = 1;


for (VarList::const_iterator i=l.begin(); i!=l.end(); i++, c++)


{



r.name_set_var(c,i->name);



*i->id=r.set_var(c);


}


build(r.add_and(),e);


return r;

}

template <class E>

Relation Rel (const VarList &li, const VarList &lo, const E &e)

{


Relation r(li.size(),lo.size());


int c = 1;


for (VarList::const_iterator i=li.begin(); i!=li.end(); i++, c++)


{



r.name_input_var(c,i->name);



*i->id=r.input_var(c);


}


c = 1;


for (VarList::const_iterator o=lo.begin(); o!=lo.end(); o++, c++)


{



r.name_output_var(c,o->name);



*o->id=r.output_var(c);


}


build(r.add_and(),e);


return r;

}

//----------------------------------------------------------

void main ()

{


Var i1 = "i1";


Var j1 = "j1";


Var k1 = "k1";


Var i2 = "i2";


Var j2 = "j2";


Var k2 = "k2";


Relation s = Rel((i1,j1,k1),(i2,j2,k2),i1<i2 || i1==i2 && (j1<j2 || j1==j2 && k1<=k2));


s.print();


s.simplify();


s.print();

}
9.1.2. Omega Library interface through OpenC++

#include "mop.h"

#include "stdio.h"

#include "iostream.h"

class omegaEntityClass : public Class

 {

   public:

      Ptree* translateHalfBinary(Environment* env, Ptree *expr);

      Ptree* TranslateBinary(Environment* env, Ptree* lexpr, Ptree* op, Ptree* rexpr);

      Ptree* TranslateUserStatement(Environment* env, Ptree* object, Ptree* op, Ptree* keyword, Ptree* rest);

      Ptree* translateDependenceBody(Environment* env, Ptree* body);

      Ptree* translateAndConvertParens(Environment* env, Ptree* body);

      static bool Initialize();

 };

bool omegaEntityClass::Initialize()

 {

   RegisterNewWhileStatement("relation");

   RegisterMetaclass("omega", "omegaEntityClass");

   return TRUE;

 }

//translateHalfBinary takes one half of a binary expression and translates it into an equivalent

//series of cout's

Ptree* omegaEntityClass::translateHalfBinary(Environment* env, Ptree *expr)

 {

   Ptree *transformedExpr=nil;

   //produce code for expr

   if(expr->IsLeaf())//if expr is a leaf

      return Ptree::qMake("cout << \"`expr`\";");//print the expr out

   else//if its not a leaf

    {

      if(Ptree::Match(expr, "[ ( %? ) ]", &expr))//if there are surrounding parens strip them off

       {

         Ptree *transformedExpr = Ptree::qMake("cout << \"(\";\n");//append (

         transformedExpr = Ptree::Make("%p %p", transformedExpr, Class::TranslateExpression(env, expr));

         transformedExpr = Ptree::qMake("`transformedExpr` cout << \")\";\n");//append )

         return transformedExpr;

       }

      else

       {

         return Ptree::Make("%p", Class::TranslateExpression(env, expr));

       }

    }

 }

//translates binary expressions such as (lexpr + rexpr)

Ptree* omegaEntityClass::TranslateBinary(Environment* env,

        Ptree* lexpr, Ptree* op, Ptree* rexpr)

 {

/*   cout << "lexpr: " << lexpr << endl;

   cout << "op: " << op << endl;

   cout << "rexpr: " << rexpr << endl;

*/

   if(Ptree::Match(op, "=="))//if the operation was ==, print out = instead

    {

      return Ptree::Make("cout << \"(\";\n"

                         "%p\n"

                         "cout << \" = \";\n"

                         "%p\n"

                         "cout << \")\";\n",

                         translateHalfBinary(env, lexpr), 

                         translateHalfBinary(env, rexpr));

    }

   else

    {

      return Ptree::Make("cout << \"(\";\n"

                         "%p\n"

                         "cout << \" %p \";\n"

                         "%p\n"

                         "cout << \")\";\n", 

                         translateHalfBinary(env, lexpr), 

                         op,

                         translateHalfBinary(env, rexpr));

    }

 }

//pull out a comma separated list from listExpr and create a comma-separated list

//outList is the comma separated list that will be output

Ptree *createDimensionsSublist(Ptree *listExpr)

 {

   Ptree *cur;//the current element in the incoming comma-separated list

   Ptree *list;//the comma separated list that will be output

   PtreeIter next(listExpr);//create the iterator

   int elements=0;//counter that keeps track of the number of elements in the list

   while((cur=next())!=nil)

    {

      if(cur->IsLeaf())//if this is a leaf (and thus, either a comma or a varname)

       {

         char *token=cur->ToString();//get the string representation of the leaf

         if(strcmp(token, ",")==0)//if it is a comma, set cur to null as a sign not to add it to the list

            cur=NULL;

       }

      else//if this is a list, then get its converted representation

       {

         cur = createDimensionsSublist(cur);

       }

      if(cur!=NULL)

       {

         if(elements==0)//if this is the first  element, don't add a coma

            list = Ptree::qMake("`cur`");

         else//if there are elements before this element, add a coma to separate this element from them

            list = Ptree::qMake("`list`,`cur`");

         elements++;

       }

    }

   if(elements==0)//if no elements were found

      return nil;

   else//if elements were found

      return list;//output the result

 }

//replaceParensWithCouts() takes the given expression, recursively traverses it and replaces

//all instances of ( and ) with `cout "(";` and `cout ")";`, respectively.

Ptree *replaceParensWithCouts(Ptree *expr)

 {

   Ptree *cur;//the current element in the incoming list

   Ptree *list = Ptree::Make("");;//list that will be output, initialized to nothing

   PtreeIter next(expr);//create the iterator

   while((cur=next())!=nil)

    {

//cout << "cur: \n      "; cur->Display();

      if(cur->IsLeaf())//if this is a leaf (and thus, possibly a ( or ) )

       {

//cout << "cur->IsLeaf() true\n";

         char *token=cur->ToString();//get the string representation of the leaf

         if(strcmp(token, "(")!=0 && //if it is not a ( or ), add it to the end of the output list

            strcmp(token, ")")!=0)

          {

//cout << "cur not ( or )\n";

//            cur = replaceParensWithCouts(cur);

//cout << "cur after: "; cur->Display();

            list = Ptree::qMake("`list` `cur`");

          }

         else//else add the appropriate cout to the list

          {

//cout << "cur is ( or )  token=" << token << "\n";

            Ptree *replacement=nil;

            if(strcmp(token, "(")==0)

               replacement = Ptree::qMake("cout << \"(\";\n");

            else

               replacement = Ptree::qMake("cout << \")\";\n");

//cout << "replacement: \n      "; replacement->Display();

            list = Ptree::qMake("`list` `replacement`");

          }

       }

      else//cur is not a leaf

       {

//cout << "cur->IsLeaf() false\n";

         cur = replaceParensWithCouts(cur);

//cout << "cur after: \n      "; cur->Display();

         list = Ptree::qMake("`list` `cur`");

       }

//cout << "list: \n      "; list->Display();

    }

   return list;

 }

//translateDependenceBody() translates the body of the dependence statement line-by-line

Ptree *omegaEntityClass::translateDependenceBody(Environment* env, Ptree* body)

 {

   if(Ptree::Match(body, "[ { %? } ]", &body))//strip off the { and }

    {

      Ptree *curLine;//the current element in list of lines in the body

      Ptree *curLineBare=nil;//the current line, without the final semicolon.

      Ptree *list=nil;//the list of lines that will be output

      PtreeIter next(body);//create the iterator

//cout << "body before: "; body->Display();

      while((curLine=next())!=nil)

       {

//cout << "curLine: "; curLine->Display();

         if(Ptree::Match(curLine, "[%? ;]", &curLineBare))//if this is a line, strip off the ';'

          {

            if(Ptree::Match(curLineBare, "[ ( %? ) ]", &curLineBare))//if there are surrounding parens strip them off

             { }

            list = Ptree::qMake("`list` cout << \"(\";\n");//append (

            list = Ptree::Make("%p %p", list, Class::TranslateExpression(env, curLineBare));

            list = Ptree::qMake("`list` cout << \")\";\n");//append )

          }

         else

            cout << "translateDependenceBody() No Match\n";

         if(!next.Empty())//if there are more lines to follow

            list = Ptree::qMake("`list` cout << \" && \";\n");//add && between this line and the next

       } 

//cout << "body after: "; list->Display();

      return list;

    }

   return nil;

 }

Ptree* omegaEntityClass::TranslateUserStatement(Environment* env, Ptree* object, Ptree* op, Ptree* keyword, Ptree* rest)

 {

   Ptree *fromFull, *toFull, *body;

   char *keywordStr = keyword->ToString();

   if(strcmp(keywordStr, "relation")==0)//if this is a dependence relation

    {

cout << "rest="; rest->Display();

      if(Ptree::Match(rest, "[( [[ %? - %? ]] ) %? ]", &fromFull, &toFull, &body))//pull the from list, the to list and the body out of the dependence relation

       {

cout << "fromFull="; fromFull->Display();

cout << "toFull="; toFull->Display();

         Ptree *from, *to;

         if(Ptree::Match(fromFull, "[ ( %? ) ]", &from) && Ptree::Match(toFull, "[ ( %? ) ]", &to))//get the meat of the from and the to

          {

cout << "from="; from->Display();

cout << "to="; to->Display();

            Ptree *fromList = createDimensionsSublist(from);//take the from list and create a comma separated list of variable

            fromList = Ptree::qMake("[`fromList`]");//surround the fromList with [ ] and output the result

            Ptree *toList = createDimensionsSublist(to);//take the to list and create a comma separated list of variable

            toList = Ptree::qMake("[`toList`]");//surround the toList with [ ] and output the result            

            Ptree *printout=nil;

            if(fromList!=nil)//if there are from variables

             {

               if(toList!=nil)//if there are to variables

                  printout = Ptree::qMake("cout << \"`fromList`->`toList`\";");//pull the two lists together to create a dependence list

               else//if there are no to variables

                  printout = Ptree::qMake("cout << \"`fromList`\";");//pull the two lists together to create a dependence list

cout << "printout="; printout->Display();

               body = translateDependenceBody(env, body);

               return Class::TranslateExpression(env, Ptree::qMake(//create a final printout of the Omega Calculator expression

                           "cout << \"{\";\n"

                           "`printout`\n"

                           "cout << \" : \";\n"

                           "`body`\n"

                           "cout << \"}\" << endl;\n"));

             }

          }

       }

    }

   //if we could do nothing here, just use the default translation

   return Class::TranslateUserStatement(env, object, op, keyword, rest);

 }
9.2. Loop Unrolling

#include "mop.h"

#include "iostream.h"

#include "stdio.h"

#include "linkedList.h"

#include "varRegionsList.h"

#include "float.h"

#include "inlinerClassInternal.h"

class varValuePair;

class inlinerClass : public Class

 {

   public:

      bool convertToDouble(char *numberStr, double &number);

      bool getValue(Ptree *expr, double *value, char *varName, double initialValue);

      void processInitialization(Environment* env, Ptree *varType, Ptree *init, linkedList<varValuePair>* varList);

      linkedList<varValuePair>* getInitialValues(Environment* env, Ptree *init);

      regionsList *getFinalValues(Ptree *test, char *varName);

      bool computeStepSize(Ptree *curIncrement, char *iteratorVarName, double startValue, double& finalValue);

      double performStep(Ptree *increment, char *varName, double startValue);

      Ptree* TranslateUserStatement(Environment* env, Ptree* object, Ptree* op, Ptree* keyword, Ptree* rest);

      static bool Initialize();

 };

bool inlinerClass::Initialize()

 {

   RegisterNewForStatement("ufor");

   return TRUE;

 }

class varValuePair

 {

   public:

      Ptree *varNode;

      char *varName;

      double varValue;

      varValuePair(char *initlVarName, Ptree *initlVarNode, double initlVarValue)

       {

         varName = initlVarName;

         varNode = initlVarNode;

         varValue = initlVarValue;

       }

      varValuePair()

       {

         varName=NULL;

         varNode=nil;

         varValue=0.0;

       }

      varValuePair(const varValuePair& pair)

       {

         varName = pair.varName;

         varNode = pair.varNode;

         varValue = pair.varValue;

       }

      void print()

       {

         cout << varName << "/" << varNode << "=" << varValue;

       }

      //returns TRUE of the varName field in this pair is equal to the varName field of the other pair

      bool equals(varValuePair &pair)

       {

         return (strcmp(varName, pair.varName)==0);            

       }

 };

//given a string representation of a number, parses it and converts it to double

bool inlinerClass::convertToDouble(char *numberStr, double &number)

 {

   double power=.1;

   int length = strlen(numberStr);//the length of the string

   int decimalIndex=0;//the index of the decimal point

   //determine where the decimal point is and set the power accordingly

   for(decimalIndex=0; decimalIndex<length; decimalIndex++)

    {

      if(numberStr[decimalIndex]>='0' && numberStr[decimalIndex]<='9')//if this is a digit

         power*=10;

      else if(numberStr[decimalIndex]=='.')//if we've hit a decimal point

         break;

      else//if we've hit a non-number character, declare failure

         return FALSE;

    }

   double accumulator=0.0;

   //now accumulate the number into accumulator

   for(int i=0; i<length; i++)

    {

      if(numberStr[i]>='0' && numberStr[i]<='9')//if this is a digit

       {

         accumulator += (numberStr[i]-'0')*power;

         power/=10;

       }

      else if(numberStr[decimalIndex]!='.')//if we've hit something other than a digit or a decimal point, declare failure

         return FALSE;

    }

   number = accumulator;

   return TRUE;

 }

//getValue() takes an expression and if it is composed of only literal numbers, computes the value of the expression and

//passes it back in the value field and returns TRUE. Otherwise returns false

bool inlinerClass::getValue(Ptree *expr, double *value, char *varName, double initialValue)

 {

   double output=0.0;

   if(Ptree::Match(expr, "[ ( %? )]", &expr))//if the expression is surrounded by parens, remove them

    { }

   Ptree *lnum=nil, *op=nil, *rnum=nil;//the operation and the left and right operands

   if(Ptree::Match(expr, "[ %? %? %? ]", &lnum, &op, &rnum))//if this is a binary operation, pull out the individial parts

    {

      double lValue=0.0;

      bool success = getValue(lnum, &lValue, varName, initialValue);

      if(success)

       {

         double rValue=0.0;

         success = getValue(rnum, &rValue, varName, initialValue);

         if(success==TRUE)

          {

            //depending on the operation, perform the calculation

            if(Ptree::Match(op, "-"))//subtraction

               (*value) = lValue - rValue;

            else if(Ptree::Match(op, "+"))//addition

               (*value) = lValue + rValue;

            else if(Ptree::Match(op, "*"))//multiplication

               (*value) = lValue * rValue;

            else if(Ptree::Match(op, "/"))//division

               (*value) = lValue / rValue;

            else

               return FALSE;

            return success;

          }

         return FALSE;

       }

      return FALSE;

    }

   else if(Ptree::Match(expr, "[ %? %? ]", &op, &rnum))//if this is a unary operation, pull out the individial parts

    {

      bool success = getValue(rnum, value, varName, initialValue);

      if(success==TRUE && Ptree::Match(op, "-"))

       {

         (*value) = 0 - (*value);//negate the rvalue;

       }

      return success;

    }

   else if(expr->IsLeaf())

    {

      bool success=FALSE;

      char *numberStr=expr->ToString();//get the string representation of the leaf

      double parsedValue=0.0;

      if(varName!=NULL && strcmp(numberStr, varName)==0)//if the given varName is not NULL and this leaf is that varName

       {

         success=TRUE;

         (*value) = initialValue;//assign the var's value to the output value

       }

      else if(success=convertToDouble(numberStr, parsedValue))

         (*value) = parsedValue;

      return success;

    }

 }

void inlinerClass::processInitialization(Environment* env, Ptree *varTypeNode, Ptree *currentVar, linkedList<varValuePair>* varList)

 {

   Ptree *varName, *varValue;

   if(Ptree::Match(currentVar, "[ %? = %? ]", &varName, &varValue))//if this is an assignment statement, pull out the variable name and the value that its being assigned to

    {

      double value=0.0;

      cout << "NEXT VAR: " << varName << " = "; 

      if(getValue(varValue, &value, NULL, 0.0))//if this variable has a constant value

       {

         bool isTypeName=TRUE;

         TypeInfo varType;

         if((varTypeNode!=nil) || //the type was provided in the varTypeNode argument

             (env->Lookup(varName, isTypeName, varType) && !isTypeName) ) //OR look up the variable to determine its type. If the lookup suceeeds and the varname is not a type name

          {

            varList->insertRear(new varValuePair(varName->ToString(), varName, value));

            cout << value << endl;

/*            cout << "Type: " << endl;

            cout << "varType.IsConst() = "<<varType.IsConst() << endl;

            cout << "varType.IsVolatile() = "<<varType.IsVolatile() << endl;

            cout << "varType.IsBuiltInType() = "<<varType.IsBuiltInType()<<"  IntType="<<IntType<<"  ShortType="<<ShortType<<"  FloatType="<<FloatType<<"  DoubleType="<<DoubleType << endl;*/

          }

       }

      else

         cout << "not a constant." << endl;

    }

 }

linkedList<varValuePair>* inlinerClass::getInitialValues(Environment* env, Ptree *init)

 {

   Ptree *initList=nil;

   Ptree *varType=nil;

   if(Ptree::Match(init, "[ [] %? %? ;]", &varType, &initList))//if there is a type declaration coming first, pull out the list of initializations

    { }

   else if(Ptree::Match(init, "[ %? ;]", &initList))//if there is no type declaration coming first, pull out the list of initializations

    { }

cout << "initList="; initList->Display();

cout << "varType="; varType->Display();

   linkedList<varValuePair>* varList = new linkedList<varValuePair>();//create a list of variables

   if(Ptree::Match(initList, "[ %* = %* ]"))//if there is only one variable initialization

    {

      processInitialization(env, varType, initList, varList);

    }

   else//if there are multiple variables being initialized

    {

      //iterate thru the list of initializations

      Ptree *currentVar;//the current element in the incoming comma-separated list

      PtreeIter initializations(initList);//create the iterator

      while((currentVar=initializations())!=nil)

       {

         if(!currentVar->IsLeaf())//if this is not a leaf (ie. not a comma)

          {

            processInitialization(env, varType, currentVar, varList);

          }

       }

    }

   return varList;

 }

regionsList *inlinerClass::getFinalValues(Ptree *test, char *varName)

 {

   cout << "test="; test->Display();

//   linkedList<varValuePair>* varList = new linkedList<varValuePair>();//create a list of variables

   if(Ptree::Match(test, "[ ( %? )]", &test))//if the test is surrounded by parens, remove them

    { }   

   Ptree *rexpr, *relation, *lexpr;

   if(Ptree::Match(test, "[ %? %? %? ]", &lexpr, &relation, &rexpr))//pull out the relation

    {

cout << "    rexpr = "; rexpr->Display();

//cout << "relation = "; relation->Display();

cout << "    lexpr = "; lexpr->Display();

      if(Ptree::Match(relation, "<") || //if this is a numeric relation

         Ptree::Match(relation, "<=") ||

         Ptree::Match(relation, "==") ||

         Ptree::Match(relation, ">=") ||

         Ptree::Match(relation, ">"))

       {

//         cout << "        numeric relation: "; relation->Display();

         //determine which side of the relation the variable belongs on 

         char sideOfVar='?';//the side on which the variable appears

//cout << "rexpr->ToString()=\""<<rexpr->ToString()<<"\"  varName=\""<<varName<<"\"";

         if(strcmp(lexpr->ToString(), varName)!=0)//if the left side of the relation IS NOT a variable name

          {

            if(strcmp(rexpr->ToString(), varName)==0)//if the right size of the relation IS a variable name

             {

               sideOfVar = 'R';

             }

          }

         else

          {

            sideOfVar = 'L';

          }

         region* newRegion=NULL;

         double rValue=0.0, lValue=0.0;

         switch(sideOfVar)

          {

            case '?': //if there is no variable

               if(getValue(rexpr, &rValue, NULL, 0.0) && getValue(lexpr, &lValue, NULL, 0.0))//if we successfully got the numbers

                {

                  //create a region based on the two numbers and the relation

                  if(Ptree::Match(relation, "<"))

                     if(lValue < rValue)//if the numbers obey the relation

                        newRegion = new region(0-DBL_MAX, TRUE, DBL_MAX, TRUE);//create the TRUE range, ie the range that includes everything

                     else//if the statement is false, give it an empty range

                        newRegion = new region(0.0, FALSE, 0.0, FALSE);//create the FALSE range, ie the range that includes nothing

                  else if(Ptree::Match(relation, "<="))

                     if(lValue <= rValue)//if the numbers obey the relation

                        newRegion = new region(0-DBL_MAX, TRUE, DBL_MAX, TRUE);//create the TRUE range, ie the range that includes everything

                     else//if the statement is false, give it an empty range

                        newRegion = new region(0.0, FALSE, 0.0, FALSE);//create the FALSE range, ie the range that includes nothing

                  else if(Ptree::Match(relation, "=="))

                     if(lValue == rValue)//if the numbers obey the relation

                        newRegion = new region(0-DBL_MAX, TRUE, DBL_MAX, TRUE);//create the TRUE range, ie the range that includes everything

                     else//if the statement is false, give it an empty range

                        newRegion = new region(0.0, FALSE, 0.0, FALSE);//create the FALSE range, ie the range that includes nothing

                  else if(Ptree::Match(relation, ">="))

                     if(lValue >= rValue)//if the numbers obey the relation

                        newRegion = new region(0-DBL_MAX, TRUE, DBL_MAX, TRUE);//create the TRUE range, ie the range that includes everything

                     else//if the statement is false, give it an empty range

                        newRegion = new region(0.0, FALSE, 0.0, FALSE);//create the FALSE range, ie the range that includes nothing

                  else if(Ptree::Match(relation, ">"))

                     if(lValue > rValue)//if the numbers obey the relation

                        newRegion = new region(0-DBL_MAX, TRUE, DBL_MAX, TRUE);//create the TRUE range, ie the range that includes everything

                     else//if the statement is false, give it an empty range

                        newRegion = new region(0.0, FALSE, 0.0, FALSE);//create the FALSE range, ie the range that includes nothing

                }

               break;

            case 'L': //if the variable is on the left

               if(getValue(rexpr, &rValue, NULL, 0.0))//if we successfully got the number on the right

                {

                  //create a region based on the two numbers and the relation

                  if(Ptree::Match(relation, "<"))

                     newRegion = new region(0-DBL_MAX, TRUE, rValue, FALSE);//create the range of rValue and everything smaller

                  else if(Ptree::Match(relation, "<="))

                     newRegion = new region(0-DBL_MAX, TRUE, rValue, TRUE);//create the range of rValue and everything smaller

                  else if(Ptree::Match(relation, "=="))

                     newRegion = new region(rValue, TRUE, rValue, TRUE);//create the range of rValue, inclusibely

                  else if(Ptree::Match(relation, ">="))

                     newRegion = new region(rValue, TRUE, DBL_MAX, TRUE);//create the range of rValue and everything larger

                  else if(Ptree::Match(relation, ">"))

                     newRegion = new region(rValue, FALSE, DBL_MAX, TRUE);//create the range of rValue and everything larger

                }

               break;

            case 'R': //if the variable is on the right

               if(getValue(rexpr, &lValue, NULL, 0.0))//if we successfully got the number on the left

                {

                  //create a region based on the two numbers and the relation

                  if(Ptree::Match(relation, "<"))

                     newRegion = new region(lValue, FALSE, DBL_MAX, TRUE);//create the range of rValue and everything larger

                  else if(Ptree::Match(relation, "<="))

                     newRegion = new region(lValue, TRUE, DBL_MAX, TRUE);//create the range of rValue and everything larger

                  else if(Ptree::Match(relation, "=="))

                     newRegion = new region(lValue, TRUE, lValue, TRUE);//create the range of rValue, inclusibely

                  else if(Ptree::Match(relation, ">="))

                     newRegion = new region(0-DBL_MAX, TRUE, lValue, TRUE);//create the range of rValue and everything smaller

                  else if(Ptree::Match(relation, ">"))

                     newRegion = new region(0-DBL_MAX, TRUE, lValue, FALSE);//create the range of rValue and everything smaller

                }

               break;

          }

         if(newRegion!=NULL)

          {

            newRegion->print(); cout << endl;

            return new regionsList(newRegion);

          }

         else

            cout << "newRegion = NULL\n";

       }

      else if(Ptree::Match(relation, "&&") || //if this is a logical relation

              Ptree::Match(relation, "||"))

       {

         cout << "        logical relation: "; relation->Display();

         regionsList *leftList = getFinalValues(lexpr, varName);

         regionsList *rightList = getFinalValues(rexpr, varName);

         if(leftList==NULL || rightList==NULL)

          {

            cout << "NULL sublist\n";

            return NULL;

          }

         if(Ptree::Match(relation, "&&"))

          {

            leftList->intersectRegions(rightList);

            delete rightList;

            //cout << "leftList = "; leftList->printRegions();

            return leftList;

          }

         else if(Ptree::Match(relation, "||"))

          {

            leftList->unionRegions(rightList);

            delete rightList;

            //cout << "leftList = "; leftList->printRegions();

            return leftList;

          }

       }

    }

   return NULL;

 }

bool inlinerClass::computeStepSize(Ptree *curIncrement, char *iteratorVarName, double startValue, double& finalValue)

 {

   Ptree *varName, *varValue, *assign;

   if(Ptree::Match(curIncrement, "[ %? %? %? ]", &varName, &assign, &varValue))//pull out the assign operation, the variable name and the value that its being assigned to

    {

//cout << "varName="; varName->Display();

//cout << "varValue="; varValue->Display();

      char* name = varName->ToString();

      if(strcmp(name, iteratorVarName)==0)//if this variable is the iterator variable

       {

         if(getValue(varValue, &finalValue, name, startValue))//if this variable has a constant value

          {

            char *assignName = assign->ToString();

cout << "assignName="<<assignName<<"   startValue="<<startValue<<"  finalValue="<<finalValue << endl;               

            //do additional operation is this is not a simple assignment statement

            if(strcmp(assignName, "+=")==0)

               finalValue = startValue + finalValue;

            else if(strcmp(assignName, "-=")==0)

               finalValue = startValue - finalValue;

            else if(strcmp(assignName, "*=")==0)

               finalValue = startValue * finalValue;

            else if(strcmp(assignName, "/=")==0)

               finalValue = startValue / finalValue;

/*WE WILL NOT IMPLEMENT % RIGHT NOW, UNTIL WE START DOING TYPE CHECKING ON THE OPERATIONS WE'RE EMULATING

            else if(strcmp(assignName, "%=")==0)

               finalValue = startValue % finalValue;*/

cout << "final finalValue="<<finalValue << endl;

            return TRUE;

          }

         else

            cout << "not a constant." << endl; 

       }

    }

   return FALSE;

 }

double inlinerClass::performStep(Ptree *increment, char *iteratorVarName, double startValue)

 {

   cout << "increment="; increment->Display();

   double finalValue=0.0;

   Ptree *varName=nil;

   //if this is an assignment statement

   if(Ptree::Match(increment, "[ %* = %* ]") || Ptree::Match(increment, "[ %* += %* ]") ||

      Ptree::Match(increment, "[ %* -= %* ]") || Ptree::Match(increment, "[ %* *= %* ]") ||

      Ptree::Match(increment, "[ %* /= %* ]") || Ptree::Match(increment, "[ %* %= %* ]"))

    {

      computeStepSize(increment, iteratorVarName, startValue, finalValue);

      return finalValue;

    }

   //if a variable is being incremented via ++

   else if(Ptree::Match(increment, "[ %? ++ ]", &varName) || Ptree::Match(increment, "[ ++ %?]", &varName))

    {

      char* name = varName->ToString();

      if(strcmp(name, iteratorVarName)==0)//if this variable is the iterator variable

         return startValue+1.0;

    }

   //if a variable is being decremented via --

   else if(Ptree::Match(increment, "[ %? -- ]", &varName) || Ptree::Match(increment, "[ -- %?]", &varName))

    {

      char* name = varName->ToString();

      if(strcmp(name, iteratorVarName)==0)//if this variable is the iterator variable

         return startValue-1.0;

    }

   else//if there are multiple variables being incremented

    {

      //iterate thru the list of initializations

      Ptree *curIncrement;//the current element in the incoming comma-separated list

      PtreeIter incrementors(increment);//create the iterator

      while((curIncrement=incrementors())!=nil)

       {

         if(!curIncrement->IsLeaf())//if this is not a leaf (ie. not a comma)

          {

            if(computeStepSize(curIncrement, iteratorVarName, startValue, finalValue))//if this incrementation applied to the iterator variable

             {

               return finalValue;

             }

          }

       }

    }

   return 0.0;

 }

Ptree* inlinerClass::TranslateUserStatement(Environment* env, Ptree* object, Ptree* op, Ptree* keyword, Ptree* rest)

 {

   cout << "object: " << object << endl;

   cout << "op: " << op << endl;

   cout << "keyword: " << keyword << endl;

cout << "rest="; rest->Display();

   Ptree *init, *test, *increment, *body;

   char *keywordStr = keyword->ToString();

   if(strcmp(keywordStr, "ufor")==0)//if this is an ufor relation

    {

      if(Ptree::Match(rest, "[( %? %? ; %? ) [ { %? } ] ]", &init, &test, &increment, &rest))//pull out the initialization, test and increment portions of the for loop

       {

cout << "init="; init->Display();

cout << "rest="; rest->Display();

         linkedList<varValuePair>* initialValues = getInitialValues(env, init);

         if(!initialValues->isEmpty() && initialValues->first()!=NULL && initialValues->first()->varName!=NULL)

          {

            regionsList *regionsList = getFinalValues(test, initialValues->first()->varName);

            cout<<"regionsList = "; regionsList->printRegions();

            Ptree *unrolled = init;

            double curIteratorValue=initialValues->first()->varValue;

            int curIteration=0;//keeps track of how many iterations we've gone thru

            //reenact the loop to determine how many iterations it will perform

            while(regionsList->inside(curIteratorValue) && curIteration<MAX_UNROLLED_ITERATIONS)

             {

//printf("%s=%f  curIteration=%d\n", initialValues->first()->varName, curIteratorValue, curIteration);

cout << initialValues->first()->varName << "=" << curIteratorValue << "  curIteration="<<curIteration<<endl;

               curIteratorValue = performStep(increment, initialValues->first()->varName, curIteratorValue);

               curIteration++;

               unrolled = Ptree::qMake("`unrolled`\n`rest`\n`increment`;\n");//add another iteration

             }

cout << "Done. "<<initialValues->first()->varName << "=" << curIteratorValue << "  curIteration="<<curIteration<<endl;

            unrolled = Ptree::qMake("{ \n `unrolled` } \n");//create a block around the unrolled loop

cout << "unrolled = "; unrolled->Display();

            delete initialValues;

            return unrolled;

          }

         delete initialValues;

       }

    }

   //if we could do nothing here, just use the default translation

   return Class::TranslateUserStatement(env, object, op, keyword, rest);

 }
9.3. Matrix Library

9.3.1. Base Header

#include <iostream.h>

const int N = 500;

/// open c++

#if __matrix == 2

metaclass MatrixClass matrix;

#endif

/// general

class matrix

{

public:


double *data;


bool owner;


inline matrix (double v = 0): owner(true)


{



data = new double[N*N];



for (int i=0; i < N*N; i++)




data[i]=v;


}


inline matrix (double *data): data(data), owner(true)


{


}


inline ~matrix ()


{



if (owner)




delete [] data;


}


inline double &operator () (int i, int j)


{



return data[i*N+j];


}


inline double *begin () const


{



return data;


}


inline double *end () const


{



return data+N*N;


}


inline matrix &operator = (matrix &m)


{



for (int i=0; i < N*N; i++)




data[i]=m.data[i];



return *this;


}

/// template

#if __matrix == 1


template<class T>


inline matrix &operator = (const T &x)


{



assign(*this,x);



return *this;


}

#endif

};

/// standard

#if __matrix == 0

inline matrix operator + (const matrix &m1, const matrix &m2)

{


double *r = new double[N*N];


for (int i=0; i < N*N; i++)



r[i]=m1.data[i]+m2.data[i];


return r;

}

inline matrix operator - (const matrix &m1, const matrix &m2)

{


double *r = new double[N*N];


for (int i=0; i < N*N; i++)



r[i]=m1.data[i]-m2.data[i];


return r;

}

inline matrix operator * (double d, const matrix &m)

{


double *r = new double[N*N];


for (int i=0; i < N*N; i++)



r[i]=d*m.data[i];


return r;

}

#endif

/// template

#if __matrix == 1

#define OClass(name, op)







\

class O##name










\

{













\

public:












\


O##name ()










\


{












\


};












\















\


inline static double apply (double x, double y)

\


{












\



return x op y;








\


}












\

}

OClass(Add,+);

OClass(Sub,-);

template<class I>

inline void assign (matrix &m, const I& r)

{

#ifdef matrix_temporary


I t = r;

#else


I &t = const_cast<I &>(r);

#endif


double *mi = m.begin();

#ifdef matrix_indirection


for (int i=N*N; i--; )



mi[i]=t[i];

#else


do


{



*mi=*t;



++t;


}


while (++mi!=m.end());

#endif

}

template<class T>

class Uexp

{

private:


T ti;


double s;

public:


inline Uexp (const T &ti, double s = 1): ti(ti), s(s)


{


}


inline Uexp (const Uexp<T>& ue): ti(ue.ti), s(1)


{


}


inline double operator * () const


{



return s*(*ti);


}


inline double operator [] (int i) const


{



return ti[i]*s;


}


inline void operator ++ ()


{



++ti;


}

};

template <class T1, class T2, class O>

class Bexp

{

private:


T1 t1i;


T2 t2i;

public:


inline Bexp (const T1& t1i, const T2 &t2i): t1i(t1i), t2i(t2i)


{


}


inline Bexp (const Bexp<T1,T2,O>& b): t1i(b.t1i), t2i(b.t2i)


{


}


inline void operator ++ ()


{



++t1i;



++t2i;


}


inline double operator * () const


{



return O::apply(*t1i,*t2i);


}


inline double operator [] (int i) const


{



return O::apply(t1i[i],t2i[i]);


}

};

#define Operation(name, op)








\
















\

inline Uexp<Bexp<double *, double *, O##name> >



\

operator op (const matrix &x, const matrix &y)



\

{














\


typedef Bexp<double *, double *, O##name> Exp;


\


return Uexp<Exp>(Exp(x.begin(),y.begin()));



\

}














\
















\

template<class X>










\

inline Uexp<Bexp<Uexp<X>, double *, O##name> >



\

operator op (const Uexp<X> &x, const matrix &y)



\

{














\


typedef Bexp<Uexp<X>, double *, O##name> Exp;


\


return Uexp<Exp>(Exp(x,y.begin()));





\

}














\
















\

template<class Y>










\

inline Uexp<Bexp<double *, Uexp<Y>, O##name> >



\

operator op (const matrix &x, const Uexp<Y>& y)



\

{














\


typedef Bexp<double *, Uexp<Y>, O##name> Exp;


\


return Uexp<Exp>(Exp(x.begin(),y));





\

}














\
















\

template<class X, class Y>








\

inline Uexp<Bexp<Uexp<X>, Uexp<Y>, O##name> >



\

operator op (const Uexp<X> &x, const Uexp<Y>& y)


\

{














\


typedef Bexp<Uexp<X>, Uexp<Y>, O##name> Exp;


\


return Uexp<Exp>(Exp(x,y));







\

}

Operation(Add,+)

Operation(Sub,-)

inline Uexp<double *> operator * (double d, const matrix &m)

{


return Uexp<double *>(m.begin(),d);

}

/*

template<class X>

inline Uexp<X> operator * (double d, const X &x)

{


return Uexp<X>(x,d);

}

*/

template<class X>

inline Uexp<X> operator / (const X& x, double d)

{


return 1/d*x;

}

#endif

/// general

inline ostream & operator << (ostream &o, matrix &m)

{


o << "matrix(" << N << "*" << N << ")" << endl;


for (int i=0; i < N; i++)


{



for (int j=0; j < N; j++)




o << m(i,j) << " ";



o << endl;


}


return o;

}
9.3.2. Meta-level OpenC++ program

#include "mop.h"

#include "stdio.h"

const char* SIZE = "N";

const int MAX = 32;

static struct { Ptree* expr; int k; } termTable[MAX];

static int numOfTerms;

static struct { Ptree* lexpr; Ptree* rexpr; int k; } mulTermTable[MAX];

static int numOfMulTerms;

static bool ParseTerms(Environment*, Ptree*, int);

class MatrixClass : public Class {

public:

    Ptree* TranslateInitializer(Environment*, Ptree*, Ptree*);

    Ptree* TranslateAssign(Environment*, Ptree*, Ptree*, Ptree*);

};

Ptree* MatrixClass::TranslateInitializer(Environment* env, Ptree* name,






 Ptree* expr)

{

    Ptree* sep = Ptree::First(expr);

    Ptree* val = Ptree::Second(expr);

    if(sep->Eq('=') && Ptree::Match(val, "[{ %* }]")) {


Ptree* tmp = Ptree::GenSym();


InsertBeforeStatement(env, Ptree::qMake("double `tmp`[] = `val`;\n"));


return Ptree::Make("= %p", tmp);

    }

    else

        return Class::TranslateInitializer(env, name, expr);

}

static Ptree* MakeInlineExpr(Ptree* index_var)

{

    int i;

    Ptree* expr;

    Ptree* inline_expr = nil;

    for(i = numOfMulTerms - 1; i >= 0; --i)


{


    char op;


    if(mulTermTable[i].k > 0)



op = '+';


    else



op = '-';


    expr = Ptree::Make("%c %p * %p.data[%p]",




       op, mulTermTable[i].lexpr,




       mulTermTable[i].rexpr, index_var);


    inline_expr = Ptree::Cons(expr, inline_expr);


}

    for(i = numOfTerms - 1; i > 0; --i){


char op;


if(termTable[i].k > 0)


    op = '+';


else


    op = '-';


expr = Ptree::Make("%c %p.data[%p]",




   op, termTable[i].expr, index_var);


inline_expr = Ptree::Cons(expr, inline_expr);

    }

    if(numOfTerms > 0){


if(termTable[0].k > 0)


    expr = Ptree::Make("%p.data[%p]",




       termTable[0].expr, index_var);


else


    expr = Ptree::Make("- %p.data[%p]",




       termTable[0].expr, index_var);


inline_expr = Ptree::Cons(expr, inline_expr);

    }

    return inline_expr;

}

static Ptree* DoOptimize(Ptree* object)

{

    Ptree* index = Ptree::GenSym();

    return Ptree::qMake(


"for(int `index` = 0; `index` < `SIZE` * `SIZE`; ++`index`)\n"


"    `object`.data[`index`] = `MakeInlineExpr(index)`;");

}

Ptree* MatrixClass::TranslateAssign(Environment* env, Ptree* object,





    Ptree* op, Ptree* expr)

{

    if(!object->IsLeaf() || !op->Eq('='))


goto giveup;

    if(expr->IsLeaf())
// e.g. a = b;


goto giveup;

    numOfTerms = 0;

    numOfMulTerms = 0;

    if(!ParseTerms(env, expr, 1))


goto giveup;

    return DoOptimize(object);

giveup:

    return Class::TranslateAssign(env, object, op, expr);

}

static bool IsScalar(Environment* env, Ptree* p)

{


double d = 0;


if (sscanf(p->ToString(),"%lf",&d)==1)



return TRUE;

    TypeInfo t;

    if(env->Lookup(p, t))


if(t.IsBuiltInType())


    return TRUE;

    return FALSE;

}

static bool ParseTerms(Environment* env, Ptree* expr, int k)

{

    Ptree* lexpr;

    Ptree* rexpr;

    if(expr->IsLeaf()){


termTable[numOfTerms].expr = expr;


termTable[numOfTerms].k = k;


++numOfTerms;


return TRUE;

    }

    else if(Ptree::Match(expr, "[%? + %?]", &lexpr, &rexpr))


return ParseTerms(env, lexpr, k) && ParseTerms(env, rexpr, k);

    else if(Ptree::Match(expr, "[%? - %?]", &lexpr, &rexpr))


return ParseTerms(env, lexpr, k) && ParseTerms(env, rexpr, -k);

    else if(Ptree::Match(expr, "[( %? )]", &lexpr))


return ParseTerms(env, lexpr, k);

    else if(Ptree::Match(expr, "[- %?]", &rexpr))


return ParseTerms(env, rexpr, -k);

    else if(Ptree::Match(expr, "[%? * %?]", &lexpr, &rexpr))


if(lexpr->IsLeaf() && rexpr->IsLeaf() && IsScalar(env, lexpr)){


    mulTermTable[numOfMulTerms].lexpr = lexpr;


    mulTermTable[numOfMulTerms].rexpr = rexpr;


    mulTermTable[numOfMulTerms].k = k;


    ++numOfMulTerms;


    return TRUE;


}


else


    return FALSE;

    else


return FALSE;

}

9.3.3. Main program

#include <time.h>

#include <stdio.h>

#ifndef __matrix

#define __matrix 0 // normal

#endif

#ifndef __expr

#define __expr a

#endif

#ifndef __count

#define __count 20

#endif

#include "matrix.h"

void main ()

{


matrix a=1, b=2, c=3, d=4, e=5, f=6, z;


clock_t t = clock();


for (int i=0; i < __count; i++)


{



z = __expr;


}


t = clock()-t;


//volatile double w = z(0,0)


printf("%lf\n",(double)t/__count/CLOCKS_PER_SEC);

}

9.4. Other sources

9.4.1. OpenC++ hack
//--- this is in the header

#ifdef OCPP

metaclass Optimizer Main;

#endif

class Main

{

public:


static int main (int, char **);

};

int main (int argc, char **argv)

{


return Main::main(argc,argv);

}

#define main Main::main

//--- real source code

//

// #include <optimizer.h>

#include <stdio.h>

int main (int argc, char **argv)

{


printf("Hello world!\n");


return 0;

}
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